![2021-2022学年度强化训练冀教版七年级数学下册第十一章-因式分解综合练习试题(精选)_第1页](http://file4.renrendoc.com/view/2fd0cd03ed02f4137b30e19e66d65c40/2fd0cd03ed02f4137b30e19e66d65c401.gif)
![2021-2022学年度强化训练冀教版七年级数学下册第十一章-因式分解综合练习试题(精选)_第2页](http://file4.renrendoc.com/view/2fd0cd03ed02f4137b30e19e66d65c40/2fd0cd03ed02f4137b30e19e66d65c402.gif)
![2021-2022学年度强化训练冀教版七年级数学下册第十一章-因式分解综合练习试题(精选)_第3页](http://file4.renrendoc.com/view/2fd0cd03ed02f4137b30e19e66d65c40/2fd0cd03ed02f4137b30e19e66d65c403.gif)
![2021-2022学年度强化训练冀教版七年级数学下册第十一章-因式分解综合练习试题(精选)_第4页](http://file4.renrendoc.com/view/2fd0cd03ed02f4137b30e19e66d65c40/2fd0cd03ed02f4137b30e19e66d65c404.gif)
![2021-2022学年度强化训练冀教版七年级数学下册第十一章-因式分解综合练习试题(精选)_第5页](http://file4.renrendoc.com/view/2fd0cd03ed02f4137b30e19e66d65c40/2fd0cd03ed02f4137b30e19e66d65c405.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、冀教版七年级数学下册第十一章 因式分解综合练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知cab0,若M|a(ac)|,N|b(ac)|,则M与N的大小关系是()AMNBMNCMND不能确定2、下
2、列等式中,从左到右是因式分解的是( )ABCD3、下列从左边到右边的变形,属于因式分解的是( )Ax2x6(x2)(x3)Bx22x1x(x2)1Cx2y2(xy)2D(x1)(x1)x214、下列各式中能用平方差公式计算的是()A(xy)(yx)B(xy)(yx)C(xy)(yx)D(xy)(yx)5、多项式分解因式的结果是( )ABCD6、下列因式分解正确的是( )ABCD7、下列等式从左到右的变形,属于因式分解的是( )A(x+1)(x1)=x21Bx28x+16=(x4)2Cx22x+1=x(x1)+1Dx24y2=(x+4y)(x4y)8、已知m1n,则m3+m2n+2mn+n2的值
3、为( )A2B1C1D29、如图,长与宽分别为a、b的长方形,它的周长为14,面积为10,则a3b+2a2b2+ab3的值为()A2560B490C70D4910、下列各式中,正确的因式分解是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、分解因式:_2、在处填入一个整式,使关于的多项式可以因式分解,则可以为_(写出一个即可)3、单项式4m2n2与12m3n2的公因式是_4、因式分解:(1)_; (2)_;(3)_; (4)_5、因式分解:_三、解答题(5小题,每小题10分,共计50分)1、(1)计算:(2)计算:(3)因式分解:(4)因式分解:2、阅读下
4、列材料:材料一:对于一个百位数字不为0的四位自然数,以它的百位数字作为十位,十位数字作为个位,得到一个两位数,若等于的千位数字与个位数字的平方差,则称数为“平方差数”例如:7136是“平方差数”,因为,所以7136是“平方差数”;又如:4251不是“平方差数”,因为,所以4251不是“平方差数”材料二:我们有时可以利用分解因数的方法解决求整数解的问题,例如:若,为两个正整数(),且,则,为18的正因数,又因为18可以分解为或或,所以方程的正整数解为或或根据上述材料解决问题:(1)判断9810,6361是否是“平方差数”?并说明理由;(2)若一个四位“平方差数”,将它的千位数字、个位数字及相加,
5、其和为30,求所有满足条件的“平方差数”3、因式分解:(1); (2)4、我们知道,任意一个正整数c都可以进行这样的分解:c=ab(b是正整数,且ab),在c的所有这些分解中,如果a,b两因数之差的绝对值最小,我们就称ab是c的最优分解并规定:M(c)=,例如9可以分解成19,33,因为9-13-3,所以33是9的最优分解,所以M(9)=1(1)求M(8);M(24);M(c+1)2的值;(2)如果一个两位正整数d(d=10 x+y,x,y都是自然数,且1xy9),交换其个位上的数与十位上的数得到的新数加上原来的两位正整数所得的和为66,那么我们称这个数为“吉祥数”,求所有“吉祥数”中M(d)
6、的最大值5、分解因式:-参考答案-一、单选题1、C【解析】【分析】方法一:根据整式的乘法与绝对值化简,得到M-N=(ac)(ba)0,故可求解;方法二:根据题意可设c=-3,a=-2,b=-1,再求出M,N,故可比较求解【详解】方法一:cab0,a-c0,M|a(ac)|=- a(ac)N|b(ac)|=- b(ac)M-N=- a(ac)- b(ac)= - a(ac)+ b(ac)=(ac)(ba)b-a0,(ac)(ba)0MN方法二: cab0,可设c=-3,a=-2,b=-1,M|-2(-2+3)|=2,N|-1(-2+3)|=1MN故选C【点睛】此题主要考查有理数的大小比较与因式分
7、解得应用,解题的关键求出M-N=(ac)(ba)0,再进行判断2、B【解析】【分析】根据因式分解的定义:把一个多项式化成几个整式积的形式,像这样的式子变形叫做这个多项式的因式分解,进行求解即可【详解】解:A、,不是整式积的形式,不是因式分解,不符而合题意;B、,是因式分解,符合题意;C、,不是乘积的形式,不是因式分解,不符合题意;D、,不是乘积的形式,不是因式分解,不符合题意;故选B【点睛】本题主要考查了因式分解的定义,熟知定义是解题的关键3、A【解析】【分析】把一个多项式化为几个整式的积的形式,叫做把这个多项式因式分解,根据概念逐一判断即可.【详解】解:x2x6(x2)(x3)属于因式分解,
8、故A符合题意;x22x1x(x2)1,右边没有化为整式的积的形式,不是因式分解,故B不符合题意;x2y2(xy)2的左右两边不相等,不能分解因式,不是因式分解,故C不符合题意;(x1)(x1)x21是整式的乘法运算,不是因式分解,故D不符合题意;故选A【点睛】本题考查的是因式分解的概念,掌握“利用因式分解的概念判断代数变形是否是因式分解”是解题的关键.4、A【解析】【分析】能用平方差公式进行因式分解的式子的特点是:两项平方项,符号相反,对各选项分析判断后利用排除法【详解】解:A、(xy)(yx)=不符合平方差公式的特点,故本选项符合题意;B、(xy)(yx),不符合平方差公式的特点,不能用平方
9、差公式计算,故本选项不合题意;C、(xy)(yx)不符合平方差公式的特点,不能用平方差公式计算,故本选项不符合题意;D、(xy)(yx)不符合平方差公式的特点,不能用平方差公式计算,故本选项不符合题意;故选A【点睛】本题考查的是应用平方差公式进行计算的能力,掌握平方差公式的结构特征是正确解题的关键5、B【解析】【分析】先提取公因式a,再根据平方差公式进行二次分解平方差公式:a2-b2=(a+b)(a-b)【详解】解:ax2-ay2=a(x2-y2)=a(x+y)(x-y)故选:B【点睛】本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次分解,注意分解要彻底6、C【解析】【
10、分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式,根据因式分解的定义和方法即可求解【详解】解:A、,错误,故该选项不符合题意;B、,错误,故该选项不符合题意;C、,正确,故该选项符合题意;D、,不能进行因式分解,故该选项不符合题意;故选:C【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键7、B【解析】【分析】根据因式分解的定义“把一个多项式化成几个整式的积的形式叫做因式分解”进行解答即可得【详解】解:A、,不是因式分解,选项说法错误,不符合题意;B、,是因式分解,选项说法正确,符合题意;C、,不是因式分解,选项说法错
11、误,不符合题意;D、左、右不相等,选项说法错误,不符合题意;故选B【点睛】本题考查了因式分解,解题的关键是熟记因式分解的定义8、C【解析】【分析】先化简代数式,再代入求值即可;【详解】m1n,m+n1,m3+m2n+2mn+n2m2(m+n)+2mn+n2m2+2mn+n2(m+n)2121,故选:C【点睛】本题主要考查了代数式求值,准确计算是解题的关键9、B【解析】【分析】利用面积公式得到ab10,由周长公式得到a+b7,所以将原式因式分解得出ab(a+b)2将其代入求值即可【详解】解:长与宽分别为a、b的长方形,它的周长为14,面积为10,ab10,a+b7,a3b+2a2b2+ab3ab
12、(a+b)21072490故选:B【点睛】本题主要考查了因式分解和代数式求值,准确计算是解题的关键10、B【解析】【分析】直接利用公式法以及提取公因式法分解因式,进而判断得出答案【详解】解:,故此选项不合题意;,故此选项符合题意;,故此选项不合题意;,故此选项不合题意;故选:【点睛】本题考查了提取公因式法以及公式法分解因式,正确运用乘法公式是解题关键二、填空题1、【解析】【分析】根据提取公因式法,提取公因式即可求解【详解】解:,故答案为:【点睛】本题考查了因式分解,解题的关键是熟练掌握提取公因式法2、2x【解析】【分析】可根据完全平方公式或提公因数法分解因式求解即可【详解】解:,可以为2x、2
13、x、2x1等,答案不唯一,故答案为:2x【点睛】本题考查因式分解,熟记常用公式,掌握因式分解的方法是解答的关键3、4m2n2【解析】【分析】找到系数的公共部分,再找到因式的公共部分即可【详解】解:由于4和12的公因数是4,m2n2和m3n2的公共部分为m2n2,所以4m2n2与12m3n2的公因式是4m2n2故答案为4m2n2【点睛】本题主要考查公因式,熟练掌握如何去找公因式是解题的关键4、 【解析】【分析】把一个多项式化成几个整式积的形式叫做这个多项式的因式分解,由此定义因式分解即可【详解】(1)由平方差公式有(2)由完全平方公式有(3)提取公因式a有(4)由十字相乘法分解因式有故答案为:;
14、【点睛】本题考查了因式分解,常见因式分解的方式有运用平方差公式、运用完全平方公式、提取公因式、十字相乘法,灵活选择因式分解的方式是解题的关键5、【解析】【分析】直接提取公因式整理即可【详解】解:,故答案是:【点睛】本题考查了提取公因式因式分解,解题的关键是找准公因式三、解答题1、(1)(2)(3)(4)【解析】【分析】(1)根据幂的运算法则和合并同类项法则计算即可;(2)先用平方差公式计算,再运用单项式乘多项式的法则计算即可;(3)先提取公因式,再运用平方差公式分解即可;(4)先进行整式运算,再因式分解即可【详解】解:(1)(2)=(3)(4)=【点睛】本题考查了整式的运算和因式分解,解题关键
15、是熟记乘法公式和因式分解的方法,准确熟练的进行计算2、 (1)9810是“平方差数”,6361不是“平方差数”,理由见解析(2)8157或6204或5250或5241【解析】【分析】(1)直接根据“平方差数”的概念求解即可;(2)设的千位数字为,个位数字为,则,由题意得,再分解正因数求解即可(1)9810是“平方差数”,9810是“平方差数”;6361不是“平方差数”,6361不是“平方差数”(2)设的千位数字为,个位数字为,则,由题意得, 即,且均为30的正因数,将30分解为或或,解得,即;,解得,即;,解得,即;解得,即或6204或5250或5241【点睛】本题考查了因式分解的应用,新定义
16、下的阅读理解,解决问题的关键是找到等量关系3、(1);(2)【解析】【分析】(1)提取公因式,进行因式分解;(2)提取公因式后,再利用平方差公式进行因式分解【详解】解:(1);(2),【点睛】本题考查了因式分解,解题的关键是掌握提取公因式及公式法进行因式分解4、(1);1;(2);【解析】【分析】(1)根据c=ab中,c的所有这些分解中,如果a,b两因数之差的绝对值最小,就称ab是c的最优分解,因此M(8)=,M(24)=,M(c+1)2= ;(2)设这个两位正整数d交换其个位上的数与十位上的数得到的新数为d,则d+d=(10 x+y)+(10y+x)=11x+11y=11(x+y)=66,由于x,y都是自然数,且1xy9,所以满足条件的“吉祥数”有15、24、33所以M(15)=,M(24)=,M(33)=,所以所有“吉祥数”中M(d)的最大值为【详解】解:(1)由题意得,M(8)=;M(24)=;M(c+1)2=;(2)设这个两位正整数d交换其个位上的数与十位上的数得到的新数为d,则d+d
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 教学创新与成果分享机制计划
- 防止职业倦怠的小技巧计划
- 医学影像科医生工作计划
- 建立员工反馈与建议机制计划
- 2025年电动晾衣机项目合作计划书
- 景区承包合同
- 珠宝定制服务特殊条款协议
- 农产品电商项目开发合作框架协议
- 泌尿外科护理个案汇报
- L-Ornithine-hydrochloride-Standard-生命科学试剂-MCE
- JT-T-775-2016大跨度斜拉桥平行钢丝拉索
- 装饰工程室内拆除专项施工方案
- 员工服务意识提升提高服务意识培训课件
- 2024年河北省石家庄市裕华区中考二模语文试题
- 客服考试题目
- 2024年公务员(国考)之行政职业能力测验真题附参考答案(完整版)
- 2024年高考改革新方案
- 社会主义发展史智慧树知到期末考试答案2024年
- 人教版五年级上册小数除法竖式计算练习练习300题及答案
- 模块1铁道线路养护与维修认知《铁道线路养护与维修》教学课件
- 城市轨道交通列车网络控制及应用 课件 项目6、7 列车网络控制管理系统、城轨列车网络控制及应用
评论
0/150
提交评论