26.2.1正比例函数_第1页
26.2.1正比例函数_第2页
26.2.1正比例函数_第3页
26.2.1正比例函数_第4页
26.2.1正比例函数_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、 第 十九 章 一次函数19.2 一次函数19.2.1 正比例函数第1课时授课教师:滕梦云京沪高速铁路全长1 318 km.设列车的平均速度为300 km/h.考虑以下问题: (1)乘京沪高铁列车,从始发站北京南站到终点站上海虹桥站,约需多少小时(结果保留小数点后一位)? (2)京沪高铁列车的行程y(单位:km)与运行时间t(单位:h)之间有何数量关系?13183004.4(h).y=300t(0t 4.4).想一想 (3)京沪高铁列车从北京南站出发2.5h后,是否已经过了距始发站1100 km的南京南站? y=3002.5=750(km), 故列车尚未到达距始发站1 100 km的南京南站.

2、 y=300t中,变量和常量分别是什么?其对应关系是函数关系吗?谁是自变量,谁是函数?自变量与常量按什么运算符号连接起来的?由此引出今天学习的课题:正比例函数.下列问题中的变量对应规律可用怎样的函数表示? (1)圆的周长 l 随半径r的大小变化而变化; (2)铁的密度为7.8 g/cm3,铁块的质量m(单位:g)随它的体积V(单位: cm3)的大小变化而变化;l=2r.m = 7.8V.学习新知 (3)每个练习本的厚度为0.5 cm,一些练习本摞在一起的总厚度h(单位:cm)随这些练习本的本数 n的变化而变化;(4)冷冻一个0 物体,使它每分下降2 ,物体的温度T(单位: )随冷冻时间t(单位

3、:分)的变化而变化.h=0.5 n.T=-2t. 认真观察以上出现的四个函数解析式,分别说出哪些是常数、自变量和函数.函数解析式常数自变量函数(1)l=2r2rl(2)m=7.8V7.8Vm(3)h=0.5n0.5nh(4)T=-2t-2tT 这些函数都是常数与自变量乘积的形式,和y=300t,y=200 x的形式一样. 归纳:一般地,形如y=kx(k是常数,k0)的函数,叫做正比例函数,其中k叫做比例系数.提问:这些函数有什么共同点?解: y= 是正比例函数,正比例系数k = . y=2x是正比例函数,正比例系数k=2., 都不是正比例函数. 例:(补充)下列式子,哪些表示y是x的正比例函数

4、?如果是,请你指出正比例系数k的值. 解析观察所给的函数表达式,看是否满足正比例函数y=kx的形式来求解. 例:(补充)若y=(k-1)x是正比例函数,则;若y=2xm是正比例函数,则m=. 解析根据正比例函数定义,利用比例系数k0,或者x的指数为1列不等式或方程进行求解.y =(k-1)x是正比例函数,k-10,k1.k1 1 解析y=2xm是正比例函数,m=1. 在函数y=(k-2) 中,当k=时,为正比例函数.解析函数y =(k-2) 为正比例函数, k=-2.-2课堂小结 正比例函数的概念:形如y=kx(k是常数,k0)的函数,叫做正比例函数,其中k叫做比例系数;会用正比例函数定义来判

5、断函数是否为正比例函数;并且会用正比例函数定义来求一些字母的取值;解题时注意:判定一个函数是否为正比例函数,要化简后再判断.1.下面四个小题中两个变量成正比例的是()A.儿童的身高和年龄 B.等腰梯形的上底固定时,下底和面积C.圆柱的高和体积D.长方体的底面是边长为定值a的正方形,它的体积和高解析:儿童的身高与年龄不成正比例关系;由等腰梯形的面积公式、圆柱的体积公式可知B,C不正确;由题意知长方体的体积=a2高,且a为定值,所以它的体积和高是成正比例的.D检测反馈2.若y=5x3m-2是正比例函数,则m=.1解析:根据正比例函数定义,得3m-2=1,解得 m=1.故填1.3.y=(k-2)x2

6、+5x是正比例函数,则k的值为.2解析:根据正比例函数定义,得k-2=0,解得k=2.故填2.4.下列式子,哪些表示y是x的正比例函数?如果是,请你指出正比例系数k的值. (1)y=-0.1x; (2)y= (3)y=2x2; (4)y2=4x; (5)y=-4x+3; (6)y=2(x-2x2)+2x2.解:(1) 表示y是x的正比例函数;正比例系数k=-0.1.(2) 表示y是x的正比例函数;正比例系数k= .(3),(4),(5),(6)都不是正比例函数.5.如果y=kx(k0),当x=4时,y=2;那么x=-3时,y的 值是多少?解:y=kx,当x=4时,y=2,4k=2,k=y= x,当x=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论