版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、Beyond Statistical Significance: Using Stata Post-Estimation Procedures to Examine Substantive EffectsGarry YoungGeorge Washington Institute of Public PolicyDecember 2, 2009Whats So Great About Statistical Significance?Statistical significance is crucially important in quantitative researchTells you
2、 if a relationship likely occurred by chance (if analysis done correctly)Tells you the direction (or sign) of the relationshipCant tell you the substantive significance or size of the relationshipWhats So Great About Statistical Significance?Cant tell you the substantive significance or size of the
3、relationshipDid the s.s. covariate increase Pr(Y=1) by a lot or little?With large Ns statistical significance is easier to get and thus more prone to finding trivial relationships “significant”Substantive Effects in ResearchToday journal reviewers, editors, and readers expect a consideration of subs
4、tantive effects authors often give it cursory treatmentPerhaps to hide trivial resultsPerhaps because it can be computationally complexPerhaps because we have no clear way to evaluate substantive significanceIf a covariate increases Pr(Y=1) by 100% is that significant?What if Pr(Y=1) without the cov
5、ariate is .05 then the covariate doubles it to .10. Is that important?Computational ComplexityIn OLS determining the substantive effect is easy: A one-unit change in X produces a b -unit change in Y, holding other variables constant. Non-linear estimators (Poisson, logit, ordered probit, etc.) pose
6、far more difficulty.Todays statistical packages especially Stata - make it easyStata OptionsLarge number of post-estimating procedures in Stata for virtually all estimatorsIn Stata. help postestimation commandsExtensive help .search postestimation Long list of available add-ons = Statas true strengt
7、h as a programS-PostClarifyS-PostSuite of post-estimation commandsSubstantive effectsDiagnostics (e.g., fit statistics)Developed by Scott Long & Jeremy FreeseJ. Scott Long and Jeremy Freese, 2005, Regression Models for Categorical Outcomes Using Stata. Second Edition. College Station, TX: Stata Pres
8、s.For more on S-Post: /jslsoc/web_spost/sp_install.htmClarifySuite of post-estimation software developed by Michael Tomz, Jason Wittenberg, and Gary KingThere are different ways to install Clarify, heres one:Installing Clarify: Step 1On an internet-connected machine type:findit clarifyInstalling Cla
9、rify: Step 2ThenclickInstalling Clarify: Step 3Then clickWhat is Clarify?Software that works within StataUses Monte Carlo simulations to produce estimates of interestAvailable EstimatorsOLS (reg)logit (logit)probit (probit)Ordered logit (ologit)Ordered probit (oprobit)Multinomial logit (mlogit)Poiss
10、on regression (poisson)Negative binomial regression (nbreg)Seemingly unrelated regression (sureg)Some LimitationsHard to use with time-series estimatorsCant handle TSCS estimatorsE.g., xtreg, xtlogit, etc.Cant handle most types of survival analysisE.g., stcox, stregStata 7 & earlier can do WeibullSo
11、me diagnostics arent availablee.g., fitstatWorkaround for Some DiagnosticsIn many casesrun the regular model outside of Clarifydo the diagnosticthen run the model in Clarify to get your substantive effects.Take Fitstat as an exampleAfter running logit in Clarify, Fitstatreturns an errorFitstat Examp
12、le Part 2Run regular logitThen fitstat. If you seriously stillwant to run this model then runit now in Clarify.The 3 Core Commandsestsimpsetxsimqiestsimpestsimp prefaces your modelInstead of: logit Y X1 X2Its: estsimp logit Y X1 X2This tells Stata to use Clarify to estimate a logit model and simulat
13、e its parametersMost options normally available with the estimator are available within ClarifyE.g., estsimp logit Y X1 X2 X3 if year = tThere are a few estsimp specific options, e.g., number of simulations to run or to run multiply-imputed datasets (more later) setxUse Setx to set the values of you
14、r explanatory variables. You have many options:- Means- Medians- MinimumsMaximumsSpecific percentilesmath. ExpressionsValues of particular observations specific valuesSimqiSimqi returns Pr(Y=) or the expected value of Y (depending on the estimator)Here, too, are many options for adjusting how simqi
15、runs and the type of output producedA WarningClarify derives its estimates from Monte Carlo simulations. This means parameter estimates will vary slightly usually very slightly.Generally increasing the number of sims will negate differencesIf you need exact replication you can set the random number
16、seed to given number using the “set seed” command.An Ordered Probit exampleConstituency-orientation of 173 MPs in single-member district seats in Australia, Canada, New Zealand, and the UK (Heitshusen, Young, and Wood 2005).D.V: Constituency Orientation: High (3), Medium (2), and Low (1)RHS variable
17、s: electoral safety, portfolio, years in office, travel time to parliament, country dummies. Oprobit Estimate of Constituency OrientationSubstantive EffectsWhat if all Xs are at mean values?. setx mean. simqi Quantity of Interest | Mean Std. Err. 95% Conf. Interval-+- Pr(conprior=1) | .1782677 .0309
18、813 .1224842 .2405272 Pr(conprior=2) | .2802904 .0381232 .2080904 .3550502 Pr(conprior=3) | .5414419 .0418051 .4566825 .6183931Marginal MPsMP at mean values except for safety. Setx is still at mean in memory so:. setx margin min. simqi Quantity of Interest | Mean Std. Err. 95% Conf. Interval-+- Pr(c
19、onprior=1) | .0881035 .0303765 .0387724 .1638489 Pr(conprior=2) | .2047718 .0385767 .1329525 .2831817 Pr(conprior=3) | .7071246 .058064 .5838024 .8131391Safe MPs. setx margin max. simqi Quantity of Interest | Mean Std. Err. 95% Conf. Interval-+- Pr(conprior=1) | .475743 .1037975 .2744931 .6825318 Pr
20、(conprior=2) | .2925022 .0459677 .1975205 .3819004 Pr(conprior=3) | .2317548 .0821582 .0960326 .4181555How about the same thing as a first difference?. setx mean. simqi, fd(pr) changex(margin min max)First Difference: margin min max Quantity of Interest | Mean Std. Err. 95% Conf. Interval-+- dPr(con
21、prior = 1) | .3876395 .119811 .1415692 .6151865 dPr(conprior = 2) | .0877304 .0322312 .0266251 .1543707 dPr(conprior = 3) | -.4753699 .1214275 -.6935345 -.2141026ExtensionsLots you can do with simqiSave predicted values and graph them, do first differences, etc. See Tomz, Wittenberg, and King (2001)
22、 or Clarify help in Stata for details.Substantive Significance?Whats up with those confidence intervals?. setx margin max. simqi Quantity of Interest | Mean Std. Err. 95% Conf. Interval-+- Pr(conprior=1) | .475743 .1037975 .2744931 .6825318 Pr(conprior=2) | .2925022 .0459677 .1975205 .3819004 Pr(con
23、prior=3) | .2317548 .0821582 .0960326 .4181555It tells about range and certaintyTake the statement from King, Tomz, and Wittenberg (2000): “Other things being equal, an additional year of education would increase your annual income by $1,500 on average, plus or minus $500.”Contrast with: “Other thin
24、gs being equal, an additional year of education would increase your annual income by $1,500.” Or: “There is a statistically significant relationship between education and income.”Multiple ImputationClarify can work with Amelia (King et al 2001).Amelia is another that works with Stata. Its a multiple imputation program for addressing missing data. I believe it will also work with Statas new multiple imputation procedure (mi) but Ive not tried it.ReferencesHeitshusen, Valerie, Garry Young, and David Wood. 2005. “Electoral Context and MP Constituency Focus in Australi
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 团队管理企业培训
- 二零二五年度企业兼职市场营销人员合同2篇
- 在线健康信息替代搜寻对老年人健康素养的影响研究-基于社会认知理论
- 医生年终工作总结
- 2025年度绿色建筑合作框架协议范本3篇
- 基于前景理论的大规模传染疫情应急管理决策研究
- 二零二五年POS机租赁与移动支付安全监控合同3篇
- 临床胃肠镜术前术后护理要点
- Unit 4 Lesson 1My family photo(说课稿)-2024-2025学年冀教版(2024)初中英语七年级上册
- 全国冀教版信息技术三年级上册新授课 二 画大熊猫 说课稿
- DB44∕T 2149-2018 森林资源规划设计调查技术规程
- 肝移植的历史、现状与展望
- 商业定价表(含各商铺价格测算销售回款)
- 【化学】重庆市2021-2022学年高一上学期期末联合检测试题
- 供应商物料质量问题赔偿协议(终端)
- 单位工程质量控制程序流程图
- 部编版小学语文三年级(下册)学期课程纲要
- 化学工业有毒有害作业工种范围表
- 洼田饮水试验
- 定置定位管理一
- 商票保贴协议
评论
0/150
提交评论