LED的结温计算_第1页
LED的结温计算_第2页
LED的结温计算_第3页
LED的结温计算_第4页
LED的结温计算_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、LED的结温计算LED的PN结结温主要影响LED光通量和寿命,本文用电压法对直插LED,食人鱼LED和大功率LED的结温和热阻进行了实验研究。在测量LED结温的同时,研究它的光谱变化,色光LED峰值波长的偏移与其结温存在线性关系,白光LED的总能量和蓝光能量比率(W/B)的变化与结温也存在线性的关系。LED存在发热现象,随着LED的工作时间和工作电流的增加,其发光强度和光通量会下降,寿命降低,对白光还会导致激发效率的下降,这主要是由于LED结温升高导致的。对于白光LED,随着结温的增加,LED发出黄光和蓝光的强度以不同的速率下降,白光LED的总能量和蓝光能量比率(W/B)与结温存在关系。首先对

2、LED的结温进行研究,由此可得到LED的热阻。然后在测量结温的同时,测量LED光谱变化,可以得出LED的PN结结温与色光LED峰值波长或白光LED的白色/蓝色能量比(W/B)之间存在一定的关系。因此可以采用非接触式方法来进行结温的测量。测量原理LED的结温是影响发光二极管各项性能指标的一个重要因素,测量LED结温的方法可用通过测量在不同环境温度下LED的正向电压的大小来得到。实验原理如图1所示,被测LED置于积分球内,积分球放在恒温箱的中间,积分球内的光经石英光纤导入SSP3112快速光谱分析仪,可以快速测取LED的峰值波长或W/B比率。将热电偶与LED管脚紧密接触,用测温仪读取不同加热电流和

3、不同环境温度下的管脚温度。恒温箱的温度范围为0C-150C,精度1C。PC机通过高速开关控制对LED的加热电流(IF)和参考电流(IFR),并测量IF和IFR下的VF和VFR。热是从温度高处向温度低处散热。大功率LED主要的散热路径是:管芯一散热垫f印制板敷铜层f印制板f环境空气。若LED的结温为T,环境空气的温J度为T,散热垫底部的温度为T(TTT。AcJcA在热的传导过程中,各种材料的导热性能不同,即有不同的热阻。若管芯传导到散热垫底面的热阻为R(LED的热阻)、散热垫传导到PCB面层敷铜层的热阻为JCR、P传导到环境空气的热阻为R,则从管芯的结温T传导到空气T的总热阻CBCBBAJAR与

4、各热阻关系为:R=R+R+R各热阻的单位是C/WoJAJAJCCBBA可以这样理解:热阻越小,其导热性能越好,即散热性能越好。如果LED的散热垫与PCB的敷铜层采用回流焊焊在一起,则R=0,则上式可写CB成:R=R+RJAJCBA散热的计算公式若结温为T、环境温度为T、LED的功耗为P,则R与T、T及P的关系为:R=JADJAJADJATOC o 1-5 h z(TT)/P(1)JAD式中P的单位是W。P与LED的正向压降V及LED的正向电流I的关系为:PDDFFD=VXI(2)FF如果已测出LED散热垫的温度T,贝H1)式可写成:CR=(TT)/P+(TT)/PJAJCDCADTOC o 1

5、-5 h z则R=(TT)/P(3)JCJCDR=(TT)/P(4)BACAD在散热计算中,当选择了大功率LED后,从数据资料中可找到其R值;当确定JCLED的正向电流I后,根据LED的V可计算出P;若已测出T的温度,则按(3)FFDC式可求出T来。J在测T前,先要做一个实验板(选择某种PCB、确定一定的面积)、焊上LED、C输入I电流,等稳定后,用K型热电偶F点温度计测LED的散热垫温度T。C在(4)式中,T及T可以测出,P可以求出,则R值可以计算出CADBA来。若计算出T来,代入(1)式可求出R。JJA这种通过试验、计算出T方法是基于用某种PCB及一定散热面积。如果计算出J来的T小于要求(

6、或等于)Tmax,则可认为选择的PCB及面积合适;若计算来JJ的T大于要求的Tmax,则要更换散热性能更好的PCB,或者增加PCB的散热面JJ积。另外,若选择的LED的R值太大,在设计上也可以更换性能上更好并且R值更JCJC小的大功率LED,使满足计算出来的TWTmax。这一点在计算举例中说明。JJ计算举例这里采用了NICHIA公司的测量T的实例中取部分数据作为计算举例。已知条件C如下:LED:3W白光LED、型号MCCW022、R=16C/W。K型热电偶点温度计测量头焊在JC散热垫上。PCB试验板:双层敷铜板(40X40mm)t=1.6mm、焊接面铜层面积1180mm2背面铜层面积1600m

7、m2。LED工作状态:I=500mA、V=3.97V。TOC o 1-5 h zFF按图9用K型热电偶点温度计测T,T=71C。测试时环境温度T=25C.CCAT计算JT=RXP+T=R(IXV)+T=16C/W(500mAX3.97V)+71C=103CJJCDCJCFFCR计算CAR=(T-T)/P=(71C25C)/1.99W=23.1C/WCACADR计算JAR=R+R=16C/W+23.1C/W=39.1C/WJAJCBA如果设计的Tmax=90C,则按上述条件计算出来的T不能满足设计要求,需要JJ改换散热更好的PCB或增大散热面积,并再一次试验及计算,直到满足TWTmaxJJ为止。

8、另外一种方法是,在采用的LED的R值太大时,若更换新型同类产品R=9CJCJC/W(I=500mA时V=3.65V),其他条件不变,T计算为:FFJT=9C/W(500mAX3.65V)+71C=87.4CJ上式计算中71C有一些误差,应焊上新的9C/W的LED重新测T(测出的值比C71C略小)。这对计算影响不大。采用了9C/W的LED后不用改变PCB材质及面积,其T符合设计的要求。JLED温度问题LED光源不能超过80C,随着LED温度的升高,其光输出和寿命则相应降低。表2大功率白光LED的结温T,在亮度衰减70%时与寿命的关系T,(C)Life(小时)T,(C)Life(小时)25234,

9、0008529,50030191,0009025,70035157,0009522,30040129,00010019,50045107,00010517,1005090,00011015,1005575,00011513,3006064,00012011,7006554,00012510,5007046,0001309,3007539,0001407,5008034,0001506,000集成式LED光源散热设计:(1)光源的散热结构:大功率的LED模块,采用特殊的绝缘陶瓷基板代替传统的PCB板,将LED产生的热量能够迅速通过陶瓷基板传导至散热板,并通过散热板和灯具散热(见下图)。根据傅立叶

10、导热公式立叶导热公式:|FP45raaiiwt1OVA、加式中a-垂直于导热方向的截面积in2;S-平壁厚度m;无一物体材料的导热系数W/.(mkJ;丁一平壁两辺的緬度差K单位导热面积的热流童称为热流密度,即以25颗LED芯片、约30W功率的集成式光源为例,LED芯片面积约1mm2,因陶瓷基板非常薄,则芯片与陶瓷基板的导热密度为q=Q/A=30/5X5X110-6=1.2X106W/m?接触处的导热膏的导热率为3.0W/(m.k),平均厚度为6=0.03mm,则陶瓷基板与芯片间的温度差为T1=(q1X6)/入=(1.2X106X0.03X10-3)/3=12陶瓷基板尺寸为直径30mm的圆,则导

11、热铝板与陶瓷基板的导热密度为q2=30/(n15X15X10-6)=(2/15n)X106W/m?接触处的导热膏的导热率为3.0W/(m.k),平均厚度为6=0.03mm,则陶瓷基板与导热铝板间的温度差为T2二(q2X6)/入=(2/15n)X106X0.03X10-3/3=4.2C由此可见,导热铝板与LED结温相差16.2C,考虑制造误差,按导热铝板比LED结温低18-20C计算,所以,要使光源寿命(光衰到70%)在30000小时,LED导热板的温度应低于60C。灯具的散热结构:超大功率LED散热板直接与灯具外壳接合,并在灯具的外壳上增加散热筋,以增加散热面积,使LED的工作温度满足其要求,

12、以保证寿命和光衰的要求。riiiirU1LJl丄即北囂0下表为GGE802-SL2X30WLED光源装入灯具内实测的温度值时间输入电压环境温度导热铝板底部温度灯体内空间温度灯体外表面(散热片底部)20分后220V/50Hz28C56C33C45C1时后220V/50Hz29C62C38C50C3时后220V/50Hz30C65C42C52C5时后220V/50Hz32C66C43C53C7时后220V/50Hz30C66C42C53C8时后220V/50Hz29C65C41C52C由此可见,LED路灯在环境温度为30C左右时,导热铝板的温度稳定在65-66C,此时LED结温应在85C左右,根据

13、表2可查出,此路灯LED光源的理论的使用寿命(光衰到70%)为29500小时。集成式LED路灯配光问题LED为180度定向发光,配光如下图:传统光源有60%以上的光线要通过二次或二次以上反射才能达到配光要求,而LED则只有30%的光线通过二次反射,LED灯具效率要高于传统光源配光问题通过将精确设计的塑料透镜直接封装在LED芯片上得以很好的解决,并且减少原来在LED上加透镜的加工误差(误差值仅为0.1mm)。其配光曲线如下:其次,灯具的散热问题通过直接散热结构和对流散热结构解决。(1)直接散热结构:将LED的铜柱与灯体外壳之间通过导热片直接贴在一起,实现了LED的铜柱与灯体外壳之间通过导热片直接

14、散热,因此从LED芯片到空气的传热过程只通过三层阶段,散热效果好。经测试用相同的LED、相同的材质,这种直接散热结构下的LED芯片比传统的散热结构的LED芯片低了3-5%(结构如下图)。1、灯体(散热器)3、LED散热铜柱(封装件)4、LED芯片5、透镜注:铜柱与芯片间涂有耐高温、高导热率的硅胶根据上面的傅立叶公式,因LED光源为分散式点阵排列,30颗LED的分布面积与1颗LED相应成倍增加,以单颗LED芯片、约1W光源计算,则温升与30颗相同,LED芯片面积约1mm2,导热铜柱尺寸为屮4mm,则芯片与铜柱的导热密度为q1=1/1X1X10-6=106W/m?接触处的导热膏的导热率为3.0W/

15、(m.k),平均厚度为6=0.03mm,则导热铜柱与芯片间的温度差为T1=(q1X6)/入=(106X0.03X10-3)/3=10C考虑制造误差,LED底部导热铜柱应比LED结温低13-15C,所以,要使光源寿命(光衰到70%)在30000小时,根据表2可知,LED导热铜柱的温度应低于65C。导热铜柱尺寸为屮4mm,则灯体(散热器)与导热铜柱的导热密度为:q2=1/n2X2X10-6=(0.25/n)X106W/m接触处的导热片的导热率为3.0W/(m.k),平均厚度为6=0.3mm,则灯体(散热器)与导热铜柱间的温度差为T2=(q2X6)/入=(0.25/n)X106X0.3X10-3)/

16、3=7.96C由此可见,灯体(散热器)与LED结温相差17.96C,考虑制造误差,按灯体(散热器)比LED结温低20-22C计算。下表为LED光源装入灯具内实测的温度值,测试环境为封闭的房间,无自然风其导热完全靠灯体的传导和对流进行。时间输入电压环境温度光源铜柱底部温度灯体内空间温度灯体内底面导热片上面灯体外表面(散热片底部)20分后220V/50Hz28C49.2C33C37.5C35C1时后220V/50Hz29C55C38C48.2C45C4时后220V/50Hz32C60.8C42C52C49.8C8时后220V/50Hz29C58.7C43C49.6C46.5C22时后220V/50

17、Hz30C57C42C48.8C46.6C24时后220V/50Hz31C58.5C41C50.6C48.1C由此可见,灯体(散热器)底部与铜柱的温差为8-12C,稳定在8C左右,与理论值7.96C相符。LED路灯在环境温度为30C左右时,导热铜柱的温度稳定在60C左右,此时LED结温应在75C左右,据表2可知,路灯LED光源的理论使用寿命(光衰到70%时)为39000小时,而实际装在灯杆上使用时,环境温度大部分时间会低于30C,自然风也是必然存在,那么路灯LED光源的实际使用寿命(光衰到70%时)会超过39000小时。从7月20到10月22共计92天,1104小时,平均气温大约30C,照度衰

18、减0.3Lux,衰减比例0.3/9.5=3.15%,根据I二EH2/cos3y可知,单位立体角的光通量(即光强I)与照度E成正比,因此,可得出,光源在1104小时的光衰为3.15%。从LED的封装材料的折射率出发,采用简化的LED结构模型,并通过菲涅耳折射反射公式,计算各个界面的光出射效率,从而得到总的光输出效率:以及封装材料折射率对光出射效率的影响。1模型的建立1.1点光源假设LED是由p型半导体和n型半导体组成的晶片,它们之间形成过渡层一p-n结,当p-n结正向偏置时,电子和空穴将分别从n和p型半导体注入p-n结,并复合而发光千21,如图1所示。假定p-n结是一正方形发光面,面积大约为0.

19、7mm2,而LED柱状截面面积一般为20mm2,因而p-n结发光面积占其4%,非常小,故可以假定p-n结发光是一个点光源。1.2全反射圆锥光线从光密媒质射向光疏媒质,当入射角大于临界角时,将发生全反射。假定采用折射率为3.9的砷化嫁材料,外面的封装材料采用折射率为1.5的环氧树脂,角i=22.60(己假定p-n结发光是一个点光源0),因此只有在i=22.60为半角的以内的光子才能溢出晶片,如图2,而反射回去的光子则假定因内部吸收不再出射。另外p-n结点光源向下半平而发射的光子由于基底和内部吸收也假定不出射。为保护半导体晶片,通常用透明介质将它固定起来,称为封装。封装一般采用环氧树脂,封装的形状

20、直接决定着输出光的分布,如图3。假定p-n结发光是1个点光源o,般LED晶片厚度为0.5mm左右,由临界角可算出圆锥的底半径为r=0.2mm,而封装半球的半径大约为2.5mm,圆锥尺寸是它的0.8%,可忽略不计,故假定光是从p-n结发光点0对应的o发出。如果采用图3所示的顶部半球形封装,晶片处于球心,可以粗略认为晶片发出的光垂直于环氧树脂一空气界面,不存在全反射,其光子溢出的损失就是反射损失,计算很方便。2相对光强分布和光输出效率的计算2.1LED晶片出射相对光强分布曲线根据两种透明媒质界面的本征振动理论,一束光经过两种透明媒质界面时,将分解为平行r入射面的p分量和垂至于入射面的s分量,井且在

21、反射、折射过程中,p,s两个分量的振动是相互独立的。再由菲涅耳折射公式可知,在折射过程中p,s分量的光子透过率是不一样的,因此计算时要分别处理。由以上发光模型,从圆锥中溢出的光子,其光分布是旋转对称的,因而可以只要选取任一通过光轴的平面,计算出此平面。0-900的光分布就能推知整个空间的光强分布曲线。p-n结发射的光子入射到晶片-树脂界面上,由于反射角的存在,入射角的范围在0-i之间,而出射角i?为0-90。具体计算过程如下:将出射角i以厶i=1。为间隔划分为90等分;22由折射公式反推对应于每一出射角下的入射角i;根据菲涅耳光子透过率公式1n2cosz2cosi4nn2cos2ix(心cos

22、i+nxcosz2)2n2cosi2ncosi4nn2coscos+心cosz2)2可分别计算得到对应于每一角度下p,s分量的光子透过率zpZs。;取p-n结的发光强度(光子密度)为单位数量1,则出射光强为(5)以零度出射角时的光强值为计算其它角度下的出射光强的相对值Wp,Ws,并计算它们的平均值W由相对光强Wp,Ws,及平均值W与角度i的一一对应关系,可以得到直角坐标系下的相对光强分布曲线,并将平均值曲线与余弦值cosi进2行比较,如图4所示。从图4可以看出,相对光强平均值曲线基本符合余弦分布。0.90.80.70.60,50.40.30.20.10102030405060708090角度(

23、度)图4直角坐标系下的相对光强分布曲线如果取:X=W*cosi2;Y=W*sini2;并以Y为纵坐标值,X,为横坐标值,就可以得到极坐标系下0-90。之间的配光曲线,如图5,将它左右复制,就能得到-9Oo-9O。的配光曲线。2.2封装材料折射率对光输出效率的影响采用半球形封装,从晶片发出的光近似垂直入射到环氧树脂一空气界面。根据菲涅耳折射公式,在正入射时,即i=i2=0。P,s分量的光子透过率相等其中n,n分别表示环氧树脂和空气的折射率。环氧树脂的折射率取1.5,空气的折射20率一般取1.0,这样可以计算光子在环氧树脂一空气界面的透过率。由于p-n结发射p,s分量的光子强度假定为1,贝Op-n

24、结在任一半平面发射的光子总数为180;对于出射光,角度间隔i=l。,将0-900下光强值Tp,Ts分别求和,得到的结果就是p、s分量在任一半2平面中溢出的光子数,将这两个结果都除以180,就能得到晶片一树脂界面p,s分量的光子透过率,取二者的平均值,即为晶片-树脂界面的光输出效率。改变环氧树脂的折射率,以0.1为间隔取空气折射率和晶片折射率之间的值并分别求出晶片-环氧树脂界面的光输出效率和环氧树脂一空气界面的光输出效率,将二者相乘,得到对应于不同环氧树脂折射率条件下LED的光输出效率,结果如图6。2.3非半球形封装LED的光强分布所谓非半球形封装。其实顶部仍是半球,而下面增加一段圆柱,如图7,这种形状与实际很接近。这时出射光将分为两部分,一部分是从顶部半球形射出,一部分从圆柱射出。现假定圆柱高为1/2球半径(h=r/2),则圆柱部分最大入射角为arctg(1/2)=26.50。圆柱部分入射角是容易得到的,至于半球形部分,则根据正弦定理,如图7中三角形厶ABO,有:hrsinZBsinA封装材料的折射率n談諒田膜这样可算出圆柱部分的入射角。设封装材料的折射率为1.5,经计算,全反射角为42。,而这种形状封装的LED的入射角都没有超过此值。根据折射定理计

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论