版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、八年级数学下册第二十二章四边形专题测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、十边形中过其中一个顶点有( )条对角线A7B8C9D102、如图,四边形中,对角线,相交于点,于点,于点,连接,若,则
2、下列结论:;四边形是平行四边形;图中共有四对全等三角形其中正确结论的个数是( )A4B3C2D13、如图,已知矩形ABCD中,R、P分别是DC、BC上的点,E、F分别是AP、RP的中点,当P在BC上从B向C移动而R不动时,那么下列结论成立的是( )A线段EF的长逐渐增大B线段EF的长逐渐减小C线段EF的长不改变D线段EF的长不能确定4、如图,已知菱形OABC的顶点O(0,0),B(2,2),菱形的对角线的交于点D;若将菱形OABC绕点O逆时针旋转,每秒旋转45,从如图所示位置起,经过60秒时,菱形的对角线的交点D的坐标为( )A(1,1)B(1,1)C(-1,1)D(1,1)5、如图,平行四边
3、形ABCD的对角线AC,BD相交于点O,下列结论错误的是()AAOCOBADBCCADBCDDACACD6、如图,平行四边形ABCD,BCD=120,AB=2,BC=4,点E是直线BC上的点,点F是直线CD上的点,连接AF,AE,EF,点M,N分别是AF,EF的中点连接MN,则MN的最小值为( )A1BCD7、如图,已知菱形ABCD的边长为2,DAB60,则对角线BD的长是( )A1B4C2D68、一个多边形的内角和等于它的外角和的2倍,则这个多边形的边数是( )A5B4C7D69、如图,ABC的周长为a,以它的各边的中点为顶点作A1B1C1,再以AB1C1各边的中点为顶点作A2B2C2,再以
4、AB2C2各边的中点为顶点作A3B3C3,如此下去,则AnBnCn的周长为()AaBaCaDa10、如图,在平面直角坐标系中,矩形OABC的点A和点C分别落在x轴和y轴正半轴上,AO4,直线l:y3x+2经过点C,将直线l向下平移m个单位,设直线可将矩形OABC的面积平分,则m的值为()A7B6C4D8第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、过某个多边形的一个顶点的所有对角线,将这个多边形分成6个三角形,这个多边形是_边形2、如图,正方形ABCD的边长为4,E是BC的中点,在对角线BD上有一点P,则PC+PE的最小值是_3、如图,在平面直角坐标系xOy中,菱形A
5、BCD的顶点D在x轴上,边BC在y轴上,若点A的坐标为(12,13),则点C的坐标是_4、五边形内角和为_5、已知平行四边形ABCD的周长是30,若AB10,则BC_三、解答题(5小题,每小题10分,共计50分)1、背景资料:在已知所在平面上求一点P,使它到三角形的三个顶点的距离之和最小.这个问题是法国数学家费马1640年前后向意大利物理学家托里拆利提出的,所求的点被人们称为“费马点”如图1,当三个内角均小于120时,费马点P在内部,当时,则取得最小值(1)如图2,等边内有一点P,若点P到顶点A、B、C的距离分别为3,4,5,求的度数,为了解决本题,我们可以将绕顶点A旋转到处,此时这样就可以利
6、用旋转变换,将三条线段、转化到一个三角形中,从而求出_;知识生成:怎样找三个内角均小于120的三角形的费马点呢?为此我们只要以三角形一边在外侧作等边三角形并连接等边三角形的顶点与的另一顶点,则连线通过三角形内部的费马点请同学们探索以下问题(2)如图3,三个内角均小于120,在外侧作等边三角形,连接,求证:过的费马点(3)如图4,在中,点P为的费马点,连接、,求的值(4)如图5,在正方形中,点E为内部任意一点,连接、,且边长;求的最小值2、如图,在菱形ABDE中,点C是边AB的中点,点P是对角线AD上的动点(可与点A,D重合),连接PC,PB已知,若要,求AP的取值范围丞泽同学所在的学习小组根据
7、学习函数的经验,设AP长为xcm,PC长为,PB长为分别对函数,随自变量x的变化而变化的规律进行了探究,下面是丞泽同学所在学习小组的探究过程,请补充完整:(1)按照表中自变量x的值进行取点、画图、测量,分别得到了,与x的几组对应值,表格中的_;x/cm01234561.731.001.00a2.643.614.583.462.642.001.732.002.643.46(2)在同一平面直角坐标系xOy中,请在图中描出补全后的表中各组数值所对应的点,并画出函数的图象;(3)结合函数图象,解决问题:当时,估计AP的长度的取值范围是_;请根据图象估计当_时,PC取到最小值(请保留点后两位)3、已知正
8、方形与正方形,(1)如图1,若点和点重合,点在线段上,点在线段的延长线上,连接、,将阴影部分三角形的面积记作,则 (用含有、的代数式表示)(2)如图2,若点与点重合,点在线段上,点在线段的延长线上,连接、,将阴影部分三角形的面积记作,则 (用含有、的代数式表示)(3)如图3,若将正方形沿正方形的边所在直线平移,使得点、在线段上(点不与点重合、点不与点重合),连接、,设,将阴影部分三角形的面积记作,则 (用含有、的代数式表示)(4)如图4,若将正方形沿正方形的边所在直线平移,使得点、在的延长线上,连接、,设,将阴影部分三角形的面积记作,则 (用含有、的代数式表示)4、如图,平行四边形ABCD中,
9、ADB90(1)求作:AB的垂直平分线MN,交AB于点M,交BD延长线于点N(要求:尺规作图,保留作图痕迹,不写作法,不下结论)(2)在(1)的条件下,设直线MN交AD于E,且C22.5,求证:NEAB5、如图,长方形纸片ABCD沿对角线AC折叠,设点D落在D处,BC交于点EAB6cm,BC8cm(1)求证AEEC;(2)求阴影部分的面积-参考答案-一、单选题1、A【解析】【分析】根据多边形对角线公式解答【详解】解:十边形中过其中一个顶点有10-3=7条对角线,故选:A【点睛】此题考查了多边形对角线公式,理解公式的得来方法是解题的关键2、B【解析】【分析】由DE=BF以及DF=BE,可证明Rt
10、DCFRtBAE,由FC=EA,以及双垂直可证,四边形CFAE是平行四边形由此可证明正确【详解】解:,在和中,(故正确);于点,于点,四边形是平行四边形,(故正确);,四边形是平行四边形,(故正确);由以上可得出:,等(故错误),故正确的有3个,故选:【点评】此题主要考查了平行四边形的性质与判定以及全等三角形的判定与性质等知识,得出是解题关键3、C【解析】【分析】因为R不动,所以AR不变根据中位线定理,EF不变【详解】解:连接AR因为E、F分别是AP、RP的中点,则EF为的中位线,所以,为定值所以线段的长不改变故选:C【点睛】本题考查了三角形的中位线定理,只要三角形的边AR不变,则对应的中位线
11、的长度就不变4、B【解析】【分析】分别过点和点作轴于点,作轴于点,根据菱形的性质以及中位线的性质求得点的坐标,进而计算旋转的度数,7.5周,进而根据中心对称求得点旋转后的D坐标【详解】如图,分别过点和点作轴于点,作轴于点,四边形为菱形,点为的中点,点为的中点,;由题意知菱形绕点逆时针旋转度数为:,菱形绕点逆时针旋转周,点绕点逆时针旋转周,旋转60秒时点的坐标为故选B【点睛】根据菱形的性质及中点的坐标公式可得点D坐标,再根据旋转的性质可得旋转后点D的坐标,熟练掌握菱形的性质及中点的坐标公式、中心对称的性质是解题的关键5、D【解析】【分析】根据平行四边形的性质解答【详解】解:四边形ABCD是平行四
12、边形,AOOC,故A正确;,故B正确; ADBC,故C正确;故选:D【点睛】此题考查了平行四边形的性质,熟记平行四边形的性质是解题的关键6、C【解析】【分析】先证明NM为AEF的中位线,根据中位线性质得出MN=,可得AE最小时,MN最小,根据点E在直线BC上,根据点到直线的距离最短得出AEBC时AE最短,根据在平行四边形ABCD中,BCD=120,求出ABC=180-BCD=180-120=60,利用三角形内角和BAE=180-ABE-AEB=180-60-90=30,利用30直角三角形性质得出BE=,再利用勾股定理求出AE即可【详解】解:M为FA中点,N为FE中点,NM为AEF的中位线,MN
13、=AE最小时,MN最小,点E在直线BC上,根据点A到直线BC的距离最短,AEBC时AE最短,在平行四边形ABCD中,BCD=120,ABC+BCD=180,ABC=180-BCD=180-120=60,BAE=180-ABE-AEB=180-60-90=30,在RtABE中,BAE=30,AB=2,BE=,根据勾股定理AE最小值=,MN=故选择C【点睛】本题考查三角形中位线性质,平行四边形性质,点到直线距离,三角形内角和,30直角三角形性质,勾股定理,掌握三角形中位线性质,平行四边形性质,点到直线距离,三角形内角和,30直角三角形性质,勾股定理是解题关键7、C【解析】略8、D【解析】【分析】利
14、用多边形内角和公式和外角和定理,列出方程即可解决问题【详解】解:根据题意,得:(n-2)180=3602,解得n=6故选:D【点睛】本题考查了多边形内角与外角,解答本题的关键是根据多边形内角和公式和外角和定理,利用方程法求边数9、A【解析】【分析】根据三角形中位线的性质可知的周长的周长,的周长的周长,以此类推找出规律,写出代数式,再整理即可选择【详解】解:以ABC的各边的中点为顶点作,的周长的周长以各边的中点为顶点作,的周长的周长,的周长故选:A【点睛】本题主要考查三角形中位线的性质,根据三角形中位线的性质求出前2个三角形的面积总结出规律是解答本题的关键10、A【解析】【分析】如图所示,连接A
15、C,OB交于点D,先求出C和A的坐标,然后根据矩形的性质得到D是AC的中点,从而求出D点坐标为(2,1),再由当直线经过点D时,可将矩形OABC的面积平分,进行求解即可【详解】解:如图所示,连接AC,OB交于点D,C是直线与y轴的交点,点C的坐标为(0,2),OA=4,A点坐标为(4,0),四边形OABC是矩形,D是AC的中点,D点坐标为(2,1),当直线经过点D时,可将矩形OABC的面积平分,由题意得平移后的直线解析式为,故选A【点睛】本题主要考查了一次函数与几何综合,一次函数的平移,矩形的性质,解题的关键在于能够熟知过矩形中心的直线平分矩形面积二、填空题1、八【解析】【分析】根据n边形从一
16、个顶点出发可引出(n-3)条对角线,可组成(n-2)个三角形,依此可得n的值,即得出答案【详解】解:由题意得,n-2=6,解得:n=8,故答案为:八【点睛】本题考查了多边形的对角线,解题的关键是熟知一个n边形从一个顶点出发,可将n边形分割成(n-2)个三角形2、【解析】【分析】要求PE+PC的最小值,PE,PC不能直接求,可考虑通过作辅助线转化PE,PC的值,从而找出其最小值求解【详解】解:如图,连接AE,PA,四边形ABCD是正方形,BD为对角线,点C关于BD的对称点为点A,PE+PC=PE+AP,根据两点之间线段最短可得AE就是AP+PE的最小值,正方形ABCD的边长为4,E是BC边的中点
17、,BE=2,AE=AB2+BE2=42+22=25,故答案为:【点睛】本题主要考查了正方形的性质和轴对称及勾股定理等知识的综合应用根据已知得出两点之间线段最短可得AE就是AP+PE的最小值是解题关键3、(0,-5)【解析】【分析】在RtODC中,利用勾股定理求出OC即可解决问题【详解】解:A(12,13),OD=12,AD=13,四边形ABCD是菱形,CD=AD=13,在RtODC中,C(0,-5)故答案为:(0,-5)【点睛】本题考查菱形的性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题4、540【解析】【分析】根据n边形的内角和公式(n2)180求解即可【详解】解:五边形内角和为
18、(52)180=540,故答案为:540【点睛】本题考查多边形的内角和,熟记多边形的内角和公式是解答的关键5、5【解析】略三、解答题1、 (1)150;(2)见详解;(3);(4)【解析】【分析】(1)根据旋转性质得出,得出BAP=CAP,APB=APC,AP=AP=3,BP=CP=4,根据ABC为等边三角形,得出BAC=60,可证APP为等边三角形,PP=AP=3,APP=60,根据勾股定理逆定理,得出PPC是直角三角形,PPC=90,可求APC=APP+PPC=60+90=150即可;(2)将APB逆时针旋转60,得到ABP,连结PP,根据APBABP,AP=AP,PB=PB,AB=AB,
19、根据PAP=BAB=60,APP和ABB均为等边三角形,得出PP=AP,根据,根据两点之间线段最短得出点C,点P,点P,点B四点共线时,最小=CB,点P在CB上即可;(3)将APB逆时针旋转60,得到APB,连结BB,PP,得出APBAPB,可证APP和ABB均为等边三角形,得出PP=AP,BB=AB,ABB=60,根据,可得点C,点P,点P,点B四点共线时,最小=CB,利用30直角三角形性质得出AB=2AC=2,根据勾股定理BC=,可求BB=AB=2,根据CBB=ABC+ABB=30+60=90,在RtCBB中,BC=即可;(4)将BCE逆时针旋转60得到CEB,连结EE,BB,过点B作BF
20、AB,交AB延长线于F,得出BCECEB,BE=BE,CE=CE,CB=CB,可证ECE与BCB均为等边三角形,得出EE=EC,BB=BC,BBC=60,得出点C,点E,点E,点B四点共线时,最小=AB,根据四边形ABCD为正方形,得出AB=BC=2,ABC=90,可求FBB=180-ABC-CBB=180-90-60=30,根据30直角三角形性质得出BF=,勾股定理BF=,可求AF=AB+BF=2+,再根据勾股定理AB=即可(1)解:连结PP,BAP=CAP,APB=APC,AP=AP=3,BP=CP=4,ABC为等边三角形,BAC=60PAP=PAC+CAP=PAC+BAP=60,APP为
21、等边三角形,,PP=AP=3,APP=60,在PPC中,PC=5,PPC是直角三角形,PPC=90,APC=APP+PPC=60+90=150,APB=APC=150,故答案为150;(2)证明:将APB逆时针旋转60,得到ABP,连结PP,APBABP,AP=AP,PB=PB,AB=AB,PAP=BAB=60,APP和ABB均为等边三角形,PP=AP,点C,点P,点P,点B四点共线时,最小=CB,点P在CB上,过的费马点(3)解:将APB逆时针旋转60,得到APB,连结BB,PP,APBAPB,AP=AP,AB=AB,PAP=BAB=60,APP和ABB均为等边三角形,PP=AP,BB=AB
22、,ABB=60,点C,点P,点P,点B四点共线时,最小=CB,AB=2AC=2,根据勾股定理BC=BB=AB=2,CBB=ABC+ABB=30+60=90,在RtCBB中,BC=最小=CB=;(4)解:将BCE逆时针旋转60得到CEB,连结EE,BB,过点B作BFAB,交AB延长线于F,BCECEB,BE=BE,CE=CE,CB=CB,ECE=BCB=60,ECE与BCB均为等边三角形,EE=EC,BB=BC,BBC=60,点C,点E,点E,点B四点共线时,最小=AB,四边形ABCD为正方形,AB=BC=2,ABC=90,FBB=180-ABC-CBB=180-90-60=30,BFAF,BF=,BF=,AF=AB+BF=2+,AB=,最小=AB=【点睛】本题考查图形旋转性质,等边三角形判定与性质,勾股定理,直角三角形判定与性质,两点之间线段最短,四点共线,正方形性质,30直角三角形性质,掌握图形旋转性质,等边三角形判定与性质,勾股定理,直角三角形判定与性质,两点之间线段最短,四点共线,正方形性质,30直角三角形性质是解题关键2、 (1)(2)见解析(3)0AP3,1.50【解析】【分析】(1)证明PAB为直角三角形,再根据勾股定理
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《折扣》说课稿-2023-2024学年六年级下册数学人教版
- Unit 5 Natural Disasters Reading Actively 说课稿-2024-2025学年高中英语重大版(2019)必修第二册
- 第6单元 口语交际:父母之爱(说课稿)2024-2025学年五年级语文上册同步教学(统编版)
- 粤教版(2019)必修一 5.1认识大数据 说课稿
- 从图表中的数据获取信息(小升初衔接)(说课稿)-2023-2024学年北师大版六年级下册数学
- 9 这些是大家的 第1课时 说课稿-2024-2025学年道德与法治二年级上册统编版
- 《智能电视信息安全 应用程序个人信息保护要求和评测方法(征求意见稿)》
- 二零二五年度环保材料采购及技术转移合同3篇
- 2025届高考生物备考说课稿:生态系统的结构
- 9 古诗三首《题西林壁》(说课稿)-2024-2025学年统编版语文四年级上册
- 五年级数学应用题100道
- 政治表现及具体事例三条经典优秀范文三篇
- 高考诗歌鉴赏专题复习:题画抒怀诗、干谒言志诗
- 2023年辽宁省交通高等专科学校高职单招(英语)试题库含答案解析
- GB/T 304.3-2002关节轴承配合
- 漆画漆艺 第三章
- CB/T 615-1995船底吸入格栅
- 光伏逆变器一课件
- 货物供应、运输、包装说明方案
- (完整版)英语高频词汇800词
- 《基础马来语》课程标准(高职)
评论
0/150
提交评论