




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第 页复合材料(f h ci lio)力学上机编程作业学院(xuyun):School of Civil Engineering 专业(zhuny):Engineering Mechanics小组成员信息:James Wilson(2012031890015)、Tau Young(2012031890011) 复合材料力学学了五个星期,这是这门课的第一次编程作业。我和杨涛结成一个小组,我用的是Fortran编制的程序,Tau Young用的是matlab编制。其中的算例以我的Fortran计算结果为准。Matlab作为可视化界面有其独到之处,在附录2中将会有所展示。 作业的内容是层合板的刚度的
2、计算和验算,包括拉伸刚度A、弯曲刚度D以及耦合刚度B。首先要给定层合板的各个参数,具体有:层合板的层数N;各单层的弹性常数E1、E2、G12;各单层对应的厚度;各单层对应的主方向夹角。然后就要计算每个单层板的二维刚度矩阵Q,具体公式如下:;得到Q矩阵后,根据课本上讲到的得到。 然后根据z坐标的定义求出到,接下来,最重要的一步,根据下式计算A、B、D。一、书上P110的几个问题可以归纳为以下几个类型。(1)正交铺设5层对称层合板(T5-7)数据文档层数5 层序数厚度mE1(Pa)E2(Pa)v12v21G12(Pa)角度()1 1.00E-039.60E+102.40E+100.10 0.40
3、1.00E+100.00 2 1.00E-039.60E+102.40E+100.10 0.40 1.00E+1090.00 3 1.00E-039.60E+102.40E+100.10 0.40 1.00E+100.00 4 1.00E-039.60E+102.40E+100.10 0.40 1.00E+1090.00 5 1.00E-039.60E+102.40E+100.10 0.40 1.00E+100.00 结果文档 拉伸刚度A= 3.5000E+08 5.0000E+07 -4.3711E-01 5.0000E+07 2.7500E+08 -6.1196E+00 -4.3711E-
4、01 -6.1196E+00 5.0000E+07 耦合刚度B= -9.0523E-12 -7.2831E-13 -3.8514E-21 -7.2831E-13 -2.2631E-12 -7.0304E-20 -3.8514E-21 -9.1480E-20 -9.0417E-13 弯曲刚度D= 8.7917E+02 1.0417E+02 -4.7354E-07 1.0417E+02 4.2292E+02 -6.6296E-06 -4.7354E-07 -6.6296E-06 1.0417E+02由此可以从课本上了解到的:A16=A26=0;D16=D26=0;相吻合。这里B显然是等于零的。正交
5、铺设(p sh)6层反对称层合板(T5-8)数据文档层数6 层序数厚度mE1(Pa)E2(Pa)v12v21G12(Pa)角度()1 1.00E-039.60E+102.40E+100.10 0.40 1.00E+100.00 2 1.00E-039.60E+102.40E+100.10 0.40 1.00E+1090.00 3 1.00E-039.60E+102.40E+100.10 0.40 1.00E+100.00 4 1.00E-039.60E+102.40E+100.10 0.40 1.00E+1090.00 5 1.00E-039.60E+102.40E+100.10 0.40 1
6、.00E+100.00 6 1.00E-039.60E+102.40E+100.10 0.40 1.00E+1090.00 结果文档 拉伸刚度A= 3.7500E+08 6.0000E+07 -6.5567E-01 6.0000E+07 3.7500E+08 -9.1794E+00 -6.5567E-01 -9.1794E+00 6.0000E+07 耦合刚度B= -1.1250E+05 1.8943E-10 -3.2784E-04 1.8943E-10 1.1250E+05 -4.5897E-03 -3.2784E-04 -4.5897E-03 1.8102E-10 弯曲刚度D= 1.125
7、0E+03 1.8000E+02 -1.9670E-06 1.8000E+02 1.1250E+03 -2.7538E-05 -1.9670E-06 -2.7538E-05 1.8000E+02由此可以和课本上了解到的:A11=A22;D11=D22;A16=A26=D16=D26=0;相吻合。(3)5层对称(duchn)角铺设层合板(T5-9)数据文档层数5 层序数厚度mE1(Pa)E2(Pa)v12v21G12(Pa)角度()1 1.00E-039.60E+102.40E+100.10 0.40 1.00E+1030.00 2 1.00E-039.60E+102.40E+100.10 0.
8、40 1.00E+10-30.00 3 1.00E-039.60E+102.40E+100.10 0.40 1.00E+1030.00 4 1.00E-039.60E+102.40E+100.10 0.40 1.00E+10-30.00 5 1.00E-039.60E+102.40E+100.10 0.40 1.00E+1030.00 结果文档 拉伸刚度A= 3.4531E+08 1.1094E+08 2.3274E+07 1.1094E+08 1.5781E+08 9.2015E+06 2.3274E+07 9.2015E+06 1.1094E+08 耦合刚度B= -1.2975E-11 -
9、1.4779E-12 1.4282E-12 -8.4022E-12 1.3998E-12 -6.5192E-13 1.4282E-12 -8.2956E-13 -8.4022E-12 弯曲刚度D= 7.1940E+02 2.3112E+02 1.4159E+02 2.3112E+02 3.2878E+02 5.5976E+01 1.4159E+02 5.5976E+01 2.3112E+02由此可以和课本上了解到的:A16、A26相对要小;D16、D26相对要小;相吻合。这里B显然是等于零的。(4)6层反对(fndu)称角铺设层合板(T5-10)数据文档层数6 层序数厚度mE1(Pa)E2(P
10、a)v12v21G12(Pa)角度()1 1.00E-039.60E+102.40E+100.10 0.40 1.00E+1030.00 2 1.00E-039.60E+102.40E+100.10 0.40 1.00E+10-30.00 3 1.00E-039.60E+102.40E+100.10 0.40 1.00E+1030.00 4 1.00E-039.60E+102.40E+100.10 0.40 1.00E+10-30.00 5 1.00E-039.60E+102.40E+100.10 0.40 1.00E+1030.00 6 1.00E-039.60E+102.40E+100.1
11、0 0.40 1.00E+10-30.00 结果文档 拉伸刚度A= 4.1437E+08 1.3313E+08 -1.3479E-09 1.3313E+08 1.8938E+08 3.0013E-10 -1.3479E-09 3.4470E-10 1.3313E+08 耦合刚度B= 1.2989E-11 -9.3543E-12 -6.9823E+04 7.4607E-12 -2.7711E-12 -2.7605E+04 -6.9823E+04 -2.7605E+04 7.4607E-12 弯曲刚度D= 1.2431E+03 3.9938E+02 2.9643E-14 3.9938E+02 5.
12、6813E+02 9.5583E-15 2.9643E-14 7.4281E-15 3.9938E+02由此可以和课本上了解到的:A16=A26=D16=D26=0;B11=B22=B12=B21=B66=0;相吻合。(5)我还想验证一个书上的例题,在课本P114。三层层合板,外层厚度t1,内层10t1,正交铺设比m=0.2,。玻璃(b l)/环氧单层板性能:E1=5.4E10Pa,E2=1.8E10Pa,v21=0.25,G12=8.8E9Pa。数据文档层数3 层序数厚度mE1(Pa)E2(Pa)v12v21G12(Pa)角度()1 1.00E+005.40E+101.80E+100.083
13、 0.250 8.80E+090.00 2 1.00E+015.40E+101.80E+100.083 0.250 8.80E+0990.00 3 1.00E+005.40E+101.80E+100.083 0.250 8.80E+090.00 结果文档 The NORMALISED extension stiffness A* equals: 2.4509E+10 4.5954E+09 -1.3893E+02 4.5954E+09 4.9017E+10 -1.2002E+03 -1.3893E+02 -1.2002E+03 8.8000E+09 The NORMALISED coupling
14、 tensor C equals: -9.3609E+09 1.4411E-05 -4.2450E+01 1.4411E-05 9.3609E+09 -3.6673E+02 -4.2450E+01 -3.6673E+02 1.6107E-05 The NORMALISED bending stiffness D* equals: 3.3869E+10 4.5954E+09 -9.6477E+01 4.5954E+09 3.9656E+10 -8.3347E+02 -9.6477E+01 -8.3347E+02 8.8000E+09由于课本上只是分析Nx的荷载,给出了A*的数值和课本上计算的结果
15、一致。二、验证Verchery的论文(lnwn)里给出的数值算例。这里一直(yzh)到Table5的数据都是从Verchery的论文中截获。Verchery论文中的18层序列,第(21)式【laminates without bending-extension coupling】的排列有两种材料(cilio),一种是Boron-Epoxy,一种是Glass-Epoxy。而且都给出了最终的计算结果Q,A*,D*。下面是我的Fortran计算数据文档和结果文档。(1)Boron-Epoxy材料。(Boron-Epoxy)数据文档层数18 层序数 厚度m E1(Pa)E2(Pa)v12v21G12(
16、Pa)角度()1 1.00E-032.04E+111.85E+100.021 0.230 5.59E+090.00 2 1.00E-032.04E+111.85E+100.021 0.230 5.59E+090.00 3 1.00E-032.04E+111.85E+100.021 0.230 5.59E+0960.00 4 1.00E-032.04E+111.85E+100.021 0.230 5.59E+0960.00 5 1.00E-032.04E+111.85E+100.021 0.230 5.59E+09-60.00 6 1.00E-032.04E+111.85E+100.021 0.
17、230 5.59E+09-60.00 7 1.00E-032.04E+111.85E+100.021 0.230 5.59E+09-60.00 8 1.00E-032.04E+111.85E+100.021 0.230 5.59E+0960.00 9 1.00E-032.04E+111.85E+100.021 0.230 5.59E+090.00 10 1.00E-032.04E+111.85E+100.021 0.230 5.59E+09-60.00 11 1.00E-032.04E+111.85E+100.021 0.230 5.59E+09-60.00 12 1.00E-032.04E+
18、111.85E+100.021 0.230 5.59E+0960.00 13 1.00E-032.04E+111.85E+100.021 0.230 5.59E+0960.00 14 1.00E-032.04E+111.85E+100.021 0.230 5.59E+090.00 15 1.00E-032.04E+111.85E+100.021 0.230 5.59E+090.00 16 1.00E-032.04E+111.85E+100.021 0.230 5.59E+090.00 17 1.00E-032.04E+111.85E+100.021 0.230 5.59E+0960.00 18
19、 1.00E-032.04E+111.85E+100.021 0.230 5.59E+09-60.00 (Boron-Epoxy)结果文档The stiffness of number 1 ply is: 2.0499E+11 4.2757E+09 0.0000E+00 4.2757E+09 1.8590E+10 0.0000E+00 0.0000E+00 0.0000E+00 5.5900E+09 The coupling stiffness B equals: -5.6581E-10 2.1876E-10 -1.4447E-10 2.1876E-10 6.5563E-10 -5.0525E
20、-10 -1.4447E-10 -4.5370E-10 2.5395E-10 The NORMALISED extension stiffness A* equals: 8.7706E+10 2.8359E+10 -6.5585E-07 2.8359E+10 8.7706E+10 -2.9973E-06 -6.5585E-07 -3.0072E-06 2.9674E+10 The NORMALISED coupling tensor C equals: -2.1719E+10 4.4599E+09 -1.4444E+09 4.4599E+09 1.2799E+10 -4.5344E+09 -1
21、.4444E+09 -4.5344E+09 4.4599E+09 The NORMALISED bending stiffness D* equals: 1.0943E+11 2.3899E+10 1.4444E+09 2.3899E+10 7.4907E+10 4.5344E+09 1.4444E+09 4.5344E+09 2.5214E+10这里的结果显然是B=0,而且得到的Q,A*,D*与论文上的数据一致,Glass-Epoxy材料(cilio)。(Glass-Epoxy)数据文档层数18 层序数 厚度m E1(Pa)E2(Pa)v12v21G12(Pa)角度()1 1.00E-033
22、.86E+108.27E+090.056 0.260 4.14E+090.00 2 1.00E-033.86E+108.27E+090.056 0.260 4.14E+090.00 3 1.00E-033.86E+108.27E+090.056 0.260 4.14E+0960.00 4 1.00E-033.86E+108.27E+090.056 0.260 4.14E+0960.00 5 1.00E-033.86E+108.27E+090.056 0.260 4.14E+09-60.00 6 1.00E-033.86E+108.27E+090.056 0.260 4.14E+09-60.00
23、 7 1.00E-033.86E+108.27E+090.056 0.260 4.14E+09-60.00 8 1.00E-033.86E+108.27E+090.056 0.260 4.14E+0960.00 9 1.00E-033.86E+108.27E+090.056 0.260 4.14E+090.00 10 1.00E-033.86E+108.27E+090.056 0.260 4.14E+09-60.00 11 1.00E-033.86E+108.27E+090.056 0.260 4.14E+09-60.00 12 1.00E-033.86E+108.27E+090.056 0.
24、260 4.14E+0960.00 13 1.00E-033.86E+108.27E+090.056 0.260 4.14E+0960.00 14 1.00E-033.86E+108.27E+090.056 0.260 4.14E+090.00 15 1.00E-033.86E+108.27E+090.056 0.260 4.14E+090.00 16 1.00E-033.86E+108.27E+090.056 0.260 4.14E+090.00 17 1.00E-033.86E+108.27E+090.056 0.260 4.14E+0960.00 18 1.00E-033.86E+108
25、.27E+090.056 0.260 4.14E+09-60.00 (Glass-Epoxy)结果文档The stiffness of number 1 ply is: 3.9170E+10 2.1820E+09 0.0000E+00 2.1820E+09 8.3922E+09 0.0000E+00 0.0000E+00 0.0000E+00 4.1400E+09 The coupling stiffness B equals: -3.2222E-10 8.5606E-11 -3.2021E-11 8.5606E-11 2.1697E-10 -8.1172E-11 -3.4829E-11 -8
26、.1172E-11 -2.0606E-13 The The NORMALISED extension stiffness A* equals: 2.0451E+10 5.5118E+09 -1.4616E-07 5.5118E+09 2.0451E+10 -4.3469E-07 -1.4491E-07 -4.3469E-07 7.4698E+09 The NORMALISED coupling tensor C equals: -3.4665E+09 6.1663E+08 -2.8000E+08 6.1663E+08 2.2332E+09 -7.0721E+08 -2.8000E+08 -7.
27、0721E+08 6.1663E+08 The NORMALISED bending stiffness D* equals: 2.3918E+10 4.8952E+09 2.8000E+08 4.8952E+09 1.8218E+10 7.0721E+08 2.8000E+08 7.0721E+08 6.8532E+09这里的结果显然是B=0,而且得到的Q,A*,D*仍然与论文上的数据一致。(3)当然我也验证了第(22)【laminates with equal elastic properties in bending and extension】、(23)【quasi-homogeneo
28、us laminates】的排序(pi x),材料是Boron-Epoxy,下面给出计算的结果。从下面的两个(lin )结果表中可以知道,(22)排序的确是C=0,(23)的排序的确是B=0且C=0。验证成功。(A)第(22)排序(pi x)。(Boron-Epoxy)结果文档 The ACTUAL stiffness tensor of the laminate: The extension stiffness A equals: 1.5787E+09 5.1047E+08 -1.9256E-08 5.1047E+08 1.5787E+09 -3.9050E-08 -1.9256E-08 -
29、5.4129E-08 5.3412E+08 The coupling stiffness B equals: -4.0463E+06 8.3088E+05 4.8750E+05 8.3088E+05 2.3845E+06 1.5303E+06 4.8750E+05 1.5303E+06 8.3088E+05 The bending stiffness D equals: 4.2625E+04 1.3783E+04 -7.3708E-13 1.3783E+04 4.2625E+04 -4.1602E-12 -7.3708E-13 -3.8027E-12 1.4421E+04 The NORMAL
30、ISED stiffness tensor of the laminate: The NORMALISED extension stiffness A* equals: 8.7706E+10 2.8359E+10 -1.0698E-06 2.8359E+10 8.7706E+10 -2.1694E-06 -1.0698E-06 -3.0072E-06 2.9674E+10 The NORMALISED coupling tensor C equals: 1.4275E-05 5.7798E-06 4.4685E-07 5.7798E-06 8.9034E-06 6.3907E-06 4.468
31、5E-07 4.8174E-06 2.6114E-06 The NORMALISED bending stiffness D* equals: 8.7706E+10 2.8359E+10 -1.5166E-06 2.8359E+10 8.7706E+10 -8.5601E-06 -1.5166E-06 -7.8246E-06 2.9674E+10(B)第(23)排序。(Boron-Epoxy)结果文档 The ACTUAL stiffness tensor of the laminate: The extension stiffness A equals: 1.5787E+09 5.1047E
32、+08 -2.2981E-08 5.1047E+08 1.5787E+09 -5.3951E-08 -2.2981E-08 -5.4129E-08 5.3412E+08 The coupling stiffness B equals: -1.0897E-09 2.1876E-10 -1.7357E-10 2.1876E-10 4.2280E-10 -4.4705E-10 -1.7357E-10 -4.5370E-10 3.7036E-10 The bending stiffness D equals: 4.2625E+04 1.3783E+04 -7.3708E-13 1.3783E+04 4
33、.2625E+04 -2.3412E-12 -7.3708E-13 -2.8932E-12 1.4421E+04 The NORMALISED stiffness tensor of the laminate: The NORMALISED extension stiffness A* equals: 8.7706E+10 2.8359E+10 -1.2767E-06 2.8359E+10 8.7706E+10 -2.9973E-06 -1.2767E-06 -3.0072E-06 2.9674E+10 The NORMALISED coupling tensor C equals: -6.9
34、290E-07 5.3458E-06 2.3989E-07 5.3458E-06 1.0632E-05 1.8201E-06 2.3989E-07 2.9460E-06 1.0096E-05 The NORMALISED bending stiffness D* equals: 8.7706E+10 2.8359E+10 -1.5166E-06 2.8359E+10 8.7706E+10 -4.8174E-06 -1.5166E-06 -5.9532E-06 2.9674E+10附件1:计算所用的程序代码。PROGRAM COMPOSITE!Coded by James WilsonIMPLI
35、CIT NONEREAL(8):A(3,3),B(3,3),D(3,3),MC(5),TEMP,ROT(3,3)!A拉伸刚度;B耦合刚度;D弯曲刚度;!MC读入材料常数;ROT旋转矩阵REAL(8):TOTAL_TH,HALF_TH !总厚度;半厚度REAL(8),ALLOCATABLE:Q(:,:,:),AL(:),T(:),Z(:),Z1(:),Z2(:),Z3(:)!Q每层板相应刚度;AL转角;T每层板的厚度;Z坐标量INTEGER(4):N,I,J,K,SEQ,L!_IJK循环变量;N板的层数;SEQ序数CHARACTER(50):CHR(8),TEMPC,filename1,file
36、name2!CHR、TEMPC:character variablesWRITE(*,*)Please insert the INP file name(a.txt for example):READ(*,*)filename1OPEN(8,file=filename1)!Open data file!Read in dataREAD(8,*)TEMPC,NALLOCATE(Q(3,3,N),AL(N),T(N),Z(N+1),Z1(N),Z2(N),Z3(N)READ(8,*)CHR(1:8)DO I=1,NREAD(8,*)SEQ,T(I),MC(1:5),AL(I)Q(:,:,I)=0!
37、Calculate stiffness of each layer for the principal axisTEMP=1./(1-MC(3)*MC(4)Q(1,1,I)=MC(1)*TEMPQ(2,2,I)=MC(2)*TEMPQ(3,3,I)=MC(5)Q(1,2,I)=MC(4)*MC(2)*TEMPQ(2,1,I)=Q(1,2,I)AL(I)=AL(I)*3.1415926535898/180ROT(1,1)=(cos(AL(I)*2!Work out Rot MatrixROT(2,2)=ROT(1,1)ROT(3,3)=cos(2*AL(I)ROT(2,1)=1-ROT(1,1)
38、ROT(1,2)=ROT(2,1)ROT(3,1)=0.5*sin(2*AL(I)ROT(3,2)=-ROT(3,1)ROT(1,3)=-2*ROT(3,1)ROT(2,3)=-2*ROT(3,2)Q(:,:,I)=MATMUL(MATMUL(ROT,Q(:,:,I),TRANSPOSE(ROT)ENDDOTOTAL_TH=sum(T)HALF_TH=TOTAL_TH/2Z(1)=-HALF_TH!Work out ZDO I=1,NZ(I+1)=Z(I)+T(I)ENDDO!calculate tensor A、B and DDO K=1,NZ1(K)=(Z(K+1)-Z(K)Z2(K)=(
39、Z(K+1)-Z(K)*(Z(K+1)+Z(K)/2Z3(K)=(Z(K+1)*3-Z(K)*3)/3ENDDOA=0;B=0;D=0WRITE(*,*)Please insert the OUP file name(b.txt for example):READ(*,*)filename2OPEN(9,file=filename2)!Write in stiffness tensor for each single plyDO K=1,NWRITE(9,100)K100 FORMAT(The stiffness of number,1X,I2,2X,ply is:)DO I=1,3WRITE
40、(9,200)Q(I,:,K)200 FORMAT(ES12.4,6X,ES12.4,6X,ES12.4)ENDDOWRITE(9,(/)A=A+Q(:,:,K)*Z1(K)B=B+Q(:,:,K)*Z2(K)D=D+Q(:,:,K)*Z3(K)ENDDO!Output the actual stiffness of the laminateWRITE(9,(/);WRITE(9,(/)WRITE(9,*)The ACTUAL stiffness tensor of the laminate:WRITE(9,(/)WRITE(9,*)The extension stiffness A equa
41、ls:DO I=1,3WRITE(9,200)A(I,1:3)ENDDOWRITE(9,(/)WRITE(9,*)The coupling stiffness B equals:DO I=1,3WRITE(9,200)B(I,1:3)ENDDOWRITE(9,(/)WRITE(9,*)The bending stiffness D equals:DO I=1,3WRITE(9,200)D(I,1:3)ENDDO!Normalised tensor outputWRITE(9,(/);WRITE(9,(/)WRITE(9,*)The NORMALISED stiffness tensor of
42、the laminate:WRITE(9,(/)WRITE(9,*)The NORMALISED extension stiffness A* equals:DO I=1,3WRITE(9,200)A(I,1:3)/TOTAL_THENDDOWRITE(9,(/)WRITE(9,*)The NORMALISED coupling tensor C equals:DO I=1,3WRITE(9,200)A(I,1:3)/TOTAL_TH-12*D(I,1:3)/TOTAL_TH*3ENDDOWRITE(9,(/)WRITE(9,*)The NORMALISED bending stiffness
43、 D* equals:DO I=1,3WRITE(9,200)12*D(I,1:3)/TOTAL_TH*3ENDDOWRITE(*,*)OUTPUT successfully,please press any key to end program!READ(*,*)END PROGRAM COMPOSITE附2杨涛同学(tng xu)的MATLAB(GUI)计算程序。主要程序:(编了个小界面,程序略长,删掉一些程序自带解释(jish)语句,添加了一些对关键语句的解释。)界面是:作的一个(y )算例如下:该算例结果(ji gu)与组内同伴James Wilson同学基本一致,其余算例结果(ji
44、gu)也基本一致,仅仅在趋近于零时有略微差异,在此不赘于。 后边(hu bian)附上源代码:function varargout = composit_plate(varargin)gui_Singleton = 1;gui_State = struct(gui_Name, mfilename, . gui_Singleton, gui_Singleton, . gui_OpeningFcn, composit_plate_OpeningFcn, . gui_OutputFcn, composit_plate_OutputFcn, . gui_LayoutFcn, , . gui_Callb
45、ack, );if nargin & ischar(varargin1) gui_State.gui_Callback = str2func(varargin1);end if nargout varargout1:nargout = gui_mainfcn(gui_State, varargin:);else gui_mainfcn(gui_State, varargin:);endfunction composit_plate_OpeningFcn(hObject, eventdata, handles, varargin)handles.output = hObject;guidata(
46、hObject, handles);ha=axes(units,normalized,position,0 0 1 1);%嵌入坐标,为嵌入背景图片准备uistack(ha,down)%作为背景II=imread(武汉大学.jpg);%读入图片信息image(II)colormap hsvset(ha,handlevisibility,off,visible,off)function varargout = composit_plate_OutputFcn(hObject, eventdata, handles) varargout1 = handles.output;function edi
47、t1_Callback(hObject, eventdata, handles)function edit1_CreateFcn(hObject, eventdata, handles)if ispc & isequal(get(hObject,BackgroundColor), get(0,defaultUicontrolBackgroundColor) set(hObject,BackgroundColor,white);endfunction edit2_Callback(hObject, eventdata, handles)function edit2_CreateFcn(hObje
48、ct, eventdata, handles)if ispc & isequal(get(hObject,BackgroundColor), get(0,defaultUicontrolBackgroundColor) set(hObject,BackgroundColor,white);endfunction edit3_Callback(hObject, eventdata, handles)function edit3_CreateFcn(hObject, eventdata, handles)if ispc & isequal(get(hObject,BackgroundColor),
49、 get(0,defaultUicontrolBackgroundColor) set(hObject,BackgroundColor,white);endfunction edit4_Callback(hObject, eventdata, )function edit4_CreateFcn(hObject, eventdata, handles)if ispc & isequal(get(hObject,BackgroundColor), get(0,defaultUicontrolBackgroundColor) set(hObject,BackgroundColor,white);en
50、d function pushbutton1_Callback(hObject, eventdata, handles)syms e1 e2 v21 g12 ang %本程序采用符号(fho)运算v12=v21*e2/e1;q=e1/(1-v12*v21),v21*e2/(1- v12*v21),0v21*e2/(1-v12*v21),e2/(1-v12*v21),00,0,g12;tran= cos(ang)2, sin(ang)2, -sin(2*ang)sin(ang)2, cos(ang)2, sin(2*ang)sin(2*ang)/2, -sin(2*ang)/2, cos(2*a
51、ng);q1=tran*q*tran;%得到(d do)Qn=str2num(get(handles.edit2,string);%读入层数n=floor(n);nn=0;A=0;B=0;D=0;t=str2num(get(handles.edit3,string);%读入每层厚度(hud) t1=zeros(1,n+1);t1(1)=0; for nn=1:n t1(nn+1)=t1(nn)+t(nn); endang1=str2num(get(handles.edit4,string);%读入每层角度const=str2num(get(handles.edit1,string);%读入材料
52、系数t0=sum(t)/2;t1=t1-t0;e1=const(1);e2=const(2);v21=const(3);g12=const(4);q11=subs(q1);for nn=1:nang=ang1(nn);nn=nn+1;A=A+subs(q11*(t1(nn)-t1(nn-1);B=B+subs(0.5*q11*(t1(nn)2-t1(nn-1)2);D=D+subs(1/3*q11*(t1(nn)3-t1(nn-1)3);end %累加计算set(handles.edit5,string,num2str(A(1,:);%以下为输出结果set(handles.edit6,stri
53、ng,num2str(A(2,:);set(handles.edit7,string,num2str(A(3,:);set(handles.edit8,string,num2str(B(1,:);set(handles.edit9,string,num2str(B(2,:);set(handles.edit10,string,num2str(B(3,:);set(handles.edit11,string,num2str(D(1,:);set(handles.edit12,string,num2str(D(2,:);set(handles.edit13,string,num2str(D(3,:
54、);function edit5_Callback(hObject, eventdata, handles)function edit5_CreateFcn(hObject, eventdata, handles)if ispc & isequal(get(hObject,BackgroundColor), get(0,defaultUicontrolBackgroundColor) set(hObject,BackgroundColor,white);endfunction edit6_Callback(hObject, eventdata, handles)function edit6_CreateFcn(hObject, eventdata, handles)if ispc & isequal(get(hObject,BackgroundColor), get(0,defaultUicontrolBackgroundColor) set
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 护理管理者外出学习汇报
- 离心泵的结构与工作原理技术培训课件3
- 大学课件色彩构成
- 小狐狸美术课件
- 第3章 图形标志设计
- 2025年江苏南通市一模语文作文解读及范文
- 如何确保安全管理中的有效性
- 广西壮族自治区钦州市第四中学2024-2025学年高一下学期3月考试历史试卷(含答案)
- 2024-2025学年度湖北省黄冈市黄梅县育才高级中学高一下学期3月月考历史试题(含答案)
- 探究密度知识
- 元朝的建立与统一课件 2024-2025学年统编版七年级历史下册
- 人教版三年级数学下册第三单元复式统计图单元检测(含答案)
- T-CECS 10390-2024 建筑幕墙用背栓
- 生物大分子相互作用-深度研究
- 2025新疆机场(集团)有限责任公司阿克苏管理分公司第一季度招聘(75人)笔试参考题库附带答案详解
- 老旧小区改造工程施工方案及技术措施
- 国家安全教育知到智慧树章节测试课后答案2024年秋山东大学(威海)
- 中国老年社区获得性肺炎急诊诊疗专家共识(2023版)解读
- 2023年青海省中考物理模拟考试试卷(附解析)
- 文化产业项目风险管理及应对措施
- 民用无人机操控员执照(CAAC)考试复习重点题库500题(含答案)
评论
0/150
提交评论