QA-T1-07(2)《QC七大工具》_第1页
QA-T1-07(2)《QC七大工具》_第2页
QA-T1-07(2)《QC七大工具》_第3页
QA-T1-07(2)《QC七大工具》_第4页
QA-T1-07(2)《QC七大工具》_第5页
已阅读5页,还剩59页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、QC七大工具作 者:李文杰日 期:2014-04-24版本:A课程安排图表的定义检查表直方图 层别法柏拉图因果图散布图控制图目录1.1何谓图表 定义:现场的数据,用点、线、面、体表示于纸上的图形。目的:方便人的视觉,更快看出信息內容,从一组数据中把握到更 多的信息。按使用目的: 分析用图表 管理用图表 计划用图表 计算用图表 统计用图表 说明用图表按数据性质: 静态图表 动态图表按表現内容: 系统图表 预定图表 记录图表 统计图表 按表示方法: 棒形图、面积图、扇形图、折线图.1.2 图表种类 1.图表的定义1.3 QC七大图表作用 魚骨追原因查檢集數据柏拉抓重點直方顯分布散佈看相關管制找異常

2、層別作解析1.图表的定义2.1 定义 将需要检查的内容或项目一一列出来;定期的或不定期的逐项检查;将问题点记录下来;是最简单,使用最多,用途最广的一种品管手法。2.检查表2.2检查表在应用时的注意事项:确定项目:参照案例或使用多方论证,使检查的项目不遗漏;确定频率:每小时,每天、每周,还是每月检查;确定人员:选择适当的人,严格执行检查工作,记录结果;公布结果,必要时,将查到的问题经汇总后再进行公布。2.检查表2.3检查表的实施步骤:确定检查对象;设计检查表;依检查表项目进行检查并记录问题或数据;对记录的问题或数据进行分析;对检查出的问题要求责任单位及时改善;检查人员在规定时间内对改善效果进行确

3、认;定期总结,持续改进。 2.检查表案例分析1:某配件厂不良检查表2.检查表3.1 定义制程中收集计量型的产品结果值;分为几个相等的区间作为横轴;将各区间内所有测定值依所出现的次数累积而成的面 积用柱子排列起來。3.直方图3.2直方图使用目的了解分布的型态;研究制程能力-CPK;工程解析与管制;测定数据的真伪;计算产品的不良率;求取分布的平均值与标准差; 借以制定规格界限LCL及UCL;与规格或标准值比較;调查是否混入两个以上不同群体;了解设计管制是否合乎制程管制。3.直方图3.3与直方图有关之名词解释次数分配相对次数累计次数(f)全距(R)组距(h)算术平均数中位数 众数 组中点标准差()样

4、本标准差()3.直方图3.4直方图的制作步骤搜集数据并记录找出数据中的最大值(L)与最小值(S)求全距(R)决定组数 K=13.321ogn or K=求组距 (h)求各组上组界、下组界求组中点作次数分配表制作直方图3.直方图3.5常见的直方图形态正常型说明:中间高,两边低,有集中趋势结论:左右对称分布 ( 常态分布),显示制程在正常运转下。 3.直方图缺齿型 ( 凹凸不平型 )说明:高低不一,有缺齿情形,不正常分配,因测定值或换算方式有偏差结论:检验员对测定值是否有偏好、假数据、或量测仪器不精密。 3.直方图3.5常见的直方图形态切边型 ( 断裂型 )说明:一端被切断结论:数据经过全检或筛选

5、。 3.直方图3.5常见的直方图形态离岛型说明:在右端或左端形成小岛结论:测量有错误,工艺调整错误,或不同原料。 3.直方图3.5常见的直方图形态高原型说明:形状似高原狀结论:不同平均值的分布混在一起,应再层別。 3.直方图3.5常见的直方图形态双峰型说明:有两个高峰出現结论:有两种分布混合,应再做层別。 3.直方图3.5常见的直方图形态偏态型 ( 偏态分布 )说明:高处偏向一边,另一边低,拖长尾巴。可分偏右,或偏左。结论:应检讨是否在技术上能够接受,例如磨具磨损,或设备松动。 3.直方图3.5常见的直方图形态测定制程能力、作为改善制程依据;计算产品不良率;测定分布形态;借以制定规格界限;与規

6、格或标准值比较;调查是否混入两个以上不同群体;判定设计时的管制界限可否用于制程管制。3.直方图3.6直方图的应用制程准确度 Ca(Capability of accuracy)说明:生产过程中所获得的数据平均值X与规格中心值之间偏差的程度Ca =实验平均值-规格中心值规格容许差%=( X- )(T/2)%T = SuSL= 规格上限规格下限3.直方图3.6直方图的应用-制程能力制程精密度Cp (Capability of Precision)说明:从制造过程中全数抽样或随机抽样所计算出来的样本标准差(S)再 乘以 以推定实际群体的标准差 用3与规格容许差比较,或是以6与规格公差比较。制程能力指

7、数Cpk说明:Cpk 是综合Ca 和 Cp 二值的指數 Cpk(1-|Ca|)CpCp =规格容许差3 或规格公差6nn-13.直方图3.6直方图的应用-制程能力Ca A |Ca|12.5%-遵守作业标准,达到规格要求,应维持 B 12.5% |Ca| 25%-尽可能改进为A级 C 25% |Ca| Cp1.0 |Ca| -全面检讨所有因素,并停产Cp A Cp1.67-太好,可以放松管理,降低成本 B 1.67 Cp1.33-合格,理想状态,继续维持 C 1.33 Cp1.0 -警告,加强管理,使受控 D 1.0 Cp0.67-不足,有不良产生,全选 E 0.67 Cp-非常不足,采取紧急措

8、施,追究原因Cpk A Cpk 1.33-足够 B 1.33 Cak1.0 -尚可,须努力 C Cpk1.0-加以改善3.直方图3.6直方图的应用-制程能力判断标准4.1定义 层别法又叫分层图;是品管所有手法中最基本的概念;是统计方法中最基础的管理工具;将大量有关某一特定主题的观点、意见或想法按组分类;将收集到的大量的数据或资料按互相关系进行分组,加以层别。4.层别法层别法可单独使用,且可捕捉到问题点;层别法也可与其它QC手法结合使用,且效果更佳;例如与柏拉图同时使用,既可将某一主题的数据层别清楚,也 可找到关键或重要的问题,抓住重要的少数和有用的多数。4.层别法4.2应用 案例分析:某五金厂

9、2012年12月8日成品抽验不良统计表为了掌握代号为HJ-018的产品在成品抽验时发生的不良数,FQC将2月18日的不良项目和不良数统计如下表14.层别法获取的信息:1.从不良数来层别,本日不良数最高的是粘合不良,计109PCS; 其次是弯曲,计50PCS;不良数最低的是划伤,计8PCS。2.从时间段来层别上午九点发现的不良数最多,计64PCS; 下午4点发现的不良数最少,计18PCS。 产品代号:HJ018本日产量:2.3万日期:2012年2月18日时间 不良项8:009:0010:0011:0012:0014:0015:0016:0017:00小计弯曲422324861050粘合10203

10、25885615109毛刺22656082435断裂57291402131披锋10231200110划伤1210001218爆裂25134012018脏污02412301316电哑纹01324012114小计2664543133272618263054.层别法1897年,意大利经济学家V.pareto (18481923年)在分析 社会经济结构时发现一个规律,这个规律就是80%的社会财富掌握在20%的人手中,后被称为“柏拉法则” ;同样在流程中大部分的缺陷经常是由相对较少的原因造成的; 5.柏拉图5.1背景与定义 1907年,美国经济学家劳伦兹(Lorenz)使用累积

11、分布曲线描绘了柏拉图法则,被称为“劳伦兹线”,1930年前后,品管泰斗、美国品管专家朱兰博士将劳伦兹曲线应用到品质管理上;二十世纪60世纪年代,日本品管大师石川馨在推行他自己发明的QCC品管圈时使用了柏拉图,从而成为品管七大手法之一。 5.柏拉图5.1背景与定义 柏拉图的使用要以层别法为前提,将层别法已确定的项目从大到小进行排列,再加上累积值的图形;柏拉图可以帮助我们找出关键的问题,抓住重要的少数及有用的多数,适用于计数值统计,也有人称其为ABC图;因为柏拉图的排列是依大小顺序,故又称排列图。5.柏拉图5.1背景与定义 5.柏拉图5.1背景与定义 5.2 制作步骤步骤1:收集数据 品管部将上个

12、月的厨柜的制程不良作出统计,其中抽样2800件,总 不良数为148件,其中不良数为:8月份橱柜制程不良品统计表序号不良项目不良数不良总数百分比(%)1孔位5335.8%2锣槽106.8%3色差53.4%4尘粒128.1%5尺寸3624.3%6划伤74.7%7不平2215%8其它31.9%合计148100%制表:李XX审核:罗XX统计日期:2012年9月1日5.柏拉图5.2 制作步骤步骤2: 把分类好的数据进行汇总,由多到少进行排序,并计算累计百分比。8月份橱柜制程不良品统计表序号不良项目不良数不良总数百分比(%)累积百分比(%)1孔位5335.8%35.8%2尺寸3624.3%60.1%3不平

13、2215%75.1%4尘粒128.1%83.2%5锣槽106.8%90%6划伤74.7%94.7%7色差53.4%98.1%8其它31.9%100%合计148100制表:李XX审核:罗XX 统计日期:2012年9月1日5.柏拉图5.2 制作步骤步骤3:绘制柏拉图。100%98.10%83.20%90%94.70%75.10%60.10%35.80%00102030405060708090100110120130140孔位尺寸不平尘粒锣槽划伤色差其它0%10%20%30%40%50%60%70%80%90%100%不良项目累计百分比5.柏拉图5.2 制作步骤步骤4:分析柏拉图。 1)从以上柏拉图

14、可以看出,制程中孔位,尺寸和不平总不良率比率的 75.1%,这三项是9月份重点改善的项目,建议用因果图对这三项不良原 因进行分析。 2)应确定项目改善责任人及完成期限,在9月份把孔位,尺寸和不平的比 例降下来。5.柏拉图6.1定义与步骤日本品管权威石川馨博士在1952年发明,又称石川图,亦叫鱼 骨图或特性要因图,由于它形状象一尾鱼的骨架而得名。使用步骤: 确认主要原因类型:机器、人员、方法、测量、材料、环境 利用头脑风暴法对每类原因进行细分析 对每个原因的重要性加以权重评定6.因果图因果图可分为追求原因型和追求对策型两种。1)追求原因型: 追求问题,进而找其原因,以因果图表示结果(特性)与原因

15、、 (要因)间的关系,如“生产效率为什么这么低?”2)追求对策型(鱼骨图反转): 问题如何防止、目标如何达成等的对策。6.因果图6.2类别 1.要集合全员的知识与经验。 2.重点在解决问题,并依5W2H的方法逐项列出。why为何必要?(对象)What 目的为何?(目的)Where 在何处做?(场所)When 何时做?(顺序)Who谁来做?(人)How 什么方法?(手段)How much花费多少?(费用) 6.因果图6.3 主要事项企业没有利用高科技减少差旅费用人员技术环境软件对软件不熟悉没有意识到技术的存在软件没有得到安装和调试公司的系统环境不允许公司内部网速度太慢协调作业技术不成熟6.因果图

16、6.4 例子为何基板銲接不良率偏率偏高人员生手经验人员异动士气干部指责疏忽情绪低落熟练度教育不足听音乐不专心聊天材料铆合不良防潮不当士气特性不佳先进未先出足氧化线材尺寸不当印刷孔偏P.C.B锡道过密库存摆放零乱锡纯度不足表格未填角度不当溶剂不纯助焊液涂布不均温度过低管理散热机未装设比重不当尺寸大小容器未先加工銲接测定器不稳定不知道指导一次浸銲工程安排图表不足重点不明手配错误长脚作业责任不明设备方法6.因果图6.4 例子尺寸超差环境光线不足噪音未按规定方法材料刚性不足方法夹具不良刀具硬度不一致材质不纯纪律松懈操作方法错误培训不足巡检时间间隔长人员冷却油测量方法不准设备主轴松动设备精度振捣不实电压

17、不稳,时高时低材料来源不同设备调整检查不及时温度变化未按时保养操作规程不全不易调整6.因果图6.4 例子将因果图关系所对应变化的数据分别描绘在轴标系 上,以掌握两个变量之间是否相关及相关的程度如何,也有 人称之为“相关图”。7.散布图7.1 定义 散布图一般有四种。正相关:当变量X增大时,另一个变量y也增大。如收入与消费 的关系; 负相关:当变量X增大时,另一个变量y却减少。如油的的粘度 与温度的关系; 无相关:变量X增大时(或r),另一变量y并不改变(或X)。 也称之为不相关,如气压与温度的关系,; 曲线相关:变量X开始增大时y也随着增大,但达到某一值后, 则当X值增大时,y反而减少,反之亦

18、然。7.散布图7.2 分类散布图的判读(正相关)。yx收入消费收入和消费的关系7.散布图7.2 分类散布图的判读(负相关)。xy油的粘度温度油的粘度与温度的关系7.散布图7.2 分类散布图的判读(无相关)。无相关7.散布图7.2 分类散布图的判读(无相关)。yx温度气压温度与气压的关系(毫不相关)7.散布图7.2 分类散布图的判读(曲线相关)。曲线相关yxyx7.散布图7.2 分类散布图的判读(曲线相关)。记忆与年龄的关系(曲线相关)记忆年龄07.散布图7.2 分类控制图(Control Chart)是对过程或制程中各特性值进 行测定、记录、评估和监控过程是否处于控制状态的一 种用统计方法。也

19、被称为管制图。8.控制图8.1 定义及背景工业革命以后, 随着生产力的进一步发展,大规模生产的 形成,如何控制大批量产品质量成为一个突出问题,单纯依 靠事后检验的质量控制方法已不能适应当时经济发展的要求 必须改进质量管理方式。于是,英、美等国开始着手研究用 统计方法代替事后检验的质量控制方法;1924年,美国的休哈特博士提出将3Sigma原理运用于生产过 程当中,并发表了著名的“控制图法”,对过程变量进行控 制,为统计质量管理奠定了理论和方法基础。8.控制图8.1 定义及背景确保制程持续稳定、可预测;提高产品质量、生产能力、降低成本;为制程分析提供依据;区分变差的特殊原因和普通原因,作为采取局

20、部措施或 对系统采取措施的指南。8.控制图8.1 定义及背景名称解释平均值一组测量值的均值极差(Range)一个子组、样本或总体中最大与最小值之差(Sigma)用于代表标准差的希腊字母标准差(Standard Deviation)过程输出的分布宽度或从过程中统计抽样值(例如:子组均值)的分布宽度的量度,用希腊字母或字母s(用于样本标准差)表示。分布宽度(Spread)一个分布中从最小值到最大值之间的间距中位数 将一组测量值从小到大排列后,中间的值即为中位数。如果数据的个数为偶数,一般将中间两个数的平均值作为中位数。单值(Individual)一个单个的单位产品或一个特性的一次测量,通常用符号 X 表示。中心线(Central Line)控制图上的一条线,代表所给数据平均值。过程均值(Process Average)一个特定过程特性的测量值分布的位置即为过程均值,通常用 X 来表示。链(Run)控制图上一系列连续上升或下降,或在中心线之上或之下的点。它是分析是否存在造成变差的特殊原因的依据。8.控制图8.2 SPC常用术语解释名称解释变差(Variation)过程的单个输出之间不可避免的差别;变差的原因可分为两类:普通原因和特殊原因。特殊原因(Special Cause)一种间断性的,不可预计的,不稳定的变差根源。有时被称为可查明原因,它存在的信号是:存在超过控制限的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论