高考专题讲座--解析几何热点问题_第1页
高考专题讲座--解析几何热点问题_第2页
高考专题讲座--解析几何热点问题_第3页
高考专题讲座--解析几何热点问题_第4页
高考专题讲座--解析几何热点问题_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、专 题解析几何热点问题一、高考复习建议: 本章内容是高考重点考查的内容,在每年的高考考试卷中占总分的15%左右,分值一直保持稳定,一般有23道客观题和一道解答题。选择题、填空题不仅重视基础知识和基本方法,而且具有一定的灵活性与综合性,难度以中档题居多,解答题注重考生对基本方法,数学思想的理解、掌握和灵活运用,综合性强,难度较大,常作为把关题或压轴题,其重点是直线与圆锥曲线的位置关系,求曲线方程,关于圆锥曲线的最值问题。考查数形结合、等价转换、分类讨论、函数与方程、逻辑推理诸方面的能力,对思维能力、思维方法的要求较高。 近几年,解析几何考查的热点有以下几个 求曲线方程或点的轨迹 求参数的取值范围

2、 求值域或最值 直线与圆锥曲线的位置关系 以上几个问题往往是相互交叉的,例如求轨迹方程时就要考虑参数的范围,而参数范围问题或者最值问题,又要结合直线与圆锥曲线关系进行。专 题解析几何热点问题秭归县屈原高中 张鸿斌 总结近几年的高考试题,复习时应注意以下问题: 1、重点掌握椭圆、双曲线、抛物线的定义或性质 这是因为椭圆、双曲线、抛物线的定义和性质是本章的基石,高考所考的题目都要涉及到这些内容,要善于多角度、多层次不断巩固强化三基,努力促进知识的深化、升华。 2、重视求曲线的方程或曲线的轨迹 曲线的方程或轨迹问题往往是高考解答题的命题对象,而且难度较大,所以要掌握求曲线的方程或曲线的轨迹的一般方法

3、:定义法、直接法、待定系数法、代入法(中间变量法)、相关点法等,还应注意与向量、三角等知识相结合。 3、加强直线与圆锥曲线的位置关系问题的复习 由于直线与圆锥曲线的位置关系一直为高考的热点,这类问题常涉及到圆锥曲线的性质和直线的基本知识点、线段的中点、弦长、垂直问题,因此分析问题时利用数形结合思想和设而不求法与弦长公式及韦达定理联系去解决问题,这样就加强了对数学各种能力的考查,其中着力抓好“运算关”,增强抽象运算与变形能力。解析几何的解题思路容易分析出来,往往由于运算不过关半途而废,在学习过程中,应当通过解题,寻求合理运算方案,以及简化运算的基本途径和方法,亲身经历运算困难的发生与克服困难的完

4、整过程,增强解决复杂问题的信心。 4、重视对数学思想、方法进行归纳提炼,达到优化解题思路,简化解题过程的目的。 用好方程思想。解析几何的题目大部分都以方程形式给定直线和圆锥曲线,因此把直线与圆锥曲线相交的弦长问题利用韦达定理进行整体处理,就可简化解题运算量。 用好函数思想。 掌握坐标法。二、学习目标三、知识梳理求曲线方程或点的轨迹 求曲线的轨迹方程是解析几何的基本问题之一,是高考中的一个热点和重点,在历年高考中出现的频率较高,特别是当今高考的改革以考查学生的创新意识为突破口,注重考查学生的逻辑思维能力、运算能力、分析问题和解决问题的能力,而轨迹方程这一热点,则能很好地反映学生在这些方面能力的掌

5、握程度。 下面介绍几种常用的方法(1) 直接法:动点满足的几何条件本身就是一些几何量的等量关系,我们只需把这种关系“翻译”成含x、y的等式就得到曲线轨迹方程。(2) 定义法:其动点的轨迹符合某一基本轨迹的定义,则可根据定义直接求出动点的轨迹方程。(3) 几何法:若所求的轨迹满足某些几何性质(如线段中垂线、角平分线性质等),可以用几何法,列出几何式,再代入点的坐标较简单。 (4) 相关点法(代入法):有些问题中,某动点满足的条件不便用等式列出,但动点是随着另一动点(称为相关点)而运动的,如果相关点所满足的条件是明显的,这时我们可以用动点坐标表示相关点坐标,再把相关点代入其所满足的方程,即可求得动

6、点的轨迹方程。 (5) 参数法:有时求动点应满足的几何条件不易得出,也无明显的相关点,但却较易发现这个动点的运动常常受到另一个变量(角度、斜率、比值、截距)等的制约,即动点坐标(x、y)中的x、y分别随另一变量的变化而变化,我们可称这个变量为参数,建立轨迹的参数方程,这种方法叫参数法。消去参数,即可得到轨迹普通方程。选定参变量要特别注意它的取值范围对动点坐标取值范围的影响。 (6) 交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这类问题常通过解方程组得出交点(含参数)的坐标,再消去参数求出所求轨迹方程,该法经常与参数法并用。 例1、(2000安徽春)已知A、B为抛物线y2 =

7、4px (p0) 上原点以外的两个动点, OAOB,OMAB,M为垂足,求点M的轨迹方程,并说明它表示什么曲线。 例2、(1997全国)如图,给出定点A(a ,0)( a0 )和直线l :x = -1 , B是直线l上的动点,BOA的角平分线交AB于C,求点C的轨迹方程,并讨论方程表示的曲线类型与a值的关系求参数范围问题在解析几何问题中,常用到参数来刻划点和曲线的运动和变化,对于参变量范围的讨论,则需要用到变与不变的相互转化,需要用函数和变量去思考,因此要用函数和方程的思想作指导,利用已知变量的取值范围以及方程的根的状况求出参数的取值范围。例1、已知椭圆C: 试确定m的范围,使得对于直线l:

8、y = 4x+m 椭圆上有不同的两点关于直线 l 对称。例2、(2004浙江)已知双曲线的中心在原点,右顶点为A(1,0),点P、Q在双曲线的右支上,点M (m , 0 ) 到直线AP的距离为1,(1)若直线AP的斜率为k ,且 ,求实数 m 的取值范围(2)当 时,APQ的内心恰好是点M,求此双曲线的方程值域和最值问题与解析几何有关的函数的值域或弦长、面积等的最大值、最小值问题是解析几何与函数的综合问题,需要以函数为工具来处理。解析几何中的最值问题,一般是根据条件列出所求目标函数的关系式,然后根据函数关系式的特征选用参数法、配方法、判别式法,应用不等式的性质,以及三角函数最值法等求出它的最大

9、值或最小值。另外,还可借助图形,利用数形结合法求最值。例1、如图,已知抛物线 y2 = 4x 的顶点为O,点A 的坐标为(5,0),倾斜角为/4的直线 l 与线段OA相交(不过O点或A点),且交抛物线于M、N两点,求AMN面积最大时直线的方程,并求AMN的最大面积。 直线与圆锥曲线关系问题 1、直线与圆锥曲线的位置关系问题,从代数角度转化为一个方程组实解个数研究(如能数形结合,可借助图形的几何性质则较为简便)。即判断直线与圆锥曲线C的位置关系时,可将直线方程带入曲线C的方程,消去y(有时消去x更方便),得到一个关于x的一元方程 ax2 + bx + c = 0 当a=0时,这是一个一次方程,若

10、方程有解,则 l 与C相交,此时只有一个公共点。若C为双曲线,则 l 平行与双曲线的渐进线;若C为抛物线,则 l 平行与抛物线的对称轴。所以当直线与双曲线、抛物线只有一个公共点时,直线和双曲线、抛物线可能相交,也可能相切。 当 a0 时,若 0 l与C相交 =0 l与C相切 0 l与C相离 2、涉及圆锥曲线的弦长,一般用弦长公式结合韦达定理求解,若是过交点的弦利用圆锥曲线的定义解题则较为方便 弦长公式 解决弦中点有两种常用办法:一是利用韦达定理及中点坐标公式;二是利用端点在曲线上,坐标满足方程,作差构造出中点坐标和斜率的关系(点差法); / 玻纤土工格栅 hoq148egk 如何,且听下回分解

11、。” 张钢铁像说评书一样,“啪”地一声把水杯往办公桌子上一放,结束了今天的演讲。马启明正听得过瘾,希望张钢铁再多讲一会儿。张钢铁笑了笑说道:“我们在一起时间长着呢,保证让你小子听个够,我现在要去开会了,明天再讲。”后来只要有时间,张钢铁总会津津有味地讲一段啤酒厂的历史,只是张钢铁的方言很重,有时有些话马启明根本就听不懂。张钢铁就连说带比画,实在马启明还听不懂时,张钢铁就改用拗口的、醋溜的普通话讲。时间一长,张钢铁干脆用他那不太标准的普通话给马启明说开了,车间职工笑着说道:“呦,马启明一来,张主任成了教授了,普通话越来越标准了,能当播音员了。”用了一个月的时间,马启明就熟悉了啤酒酿造的全部生产流

12、程,并全心投入到工作之中。花开啤酒到底发展得怎么样?会不会按照马启明的想法一样一路顺风、蒸蒸而上呢?有没有意外情况发生呢?5初到美丽的江苏|刚度完新婚蜜月期的马启明觉得自己特别亢奋,每一个毛孔都迸发着激情,浑身有使不完的劲。他将新婚燕尔的妻子送走以后,稍微准备了一下,向单位请好假,就直奔江苏海涛州。吉人自有天助,在海涛州人事局的牵线搭桥下,一切进展得相当顺利,很快就谈好了对口单位-江苏花开啤酒厂。那几天,马启明的眼神像是刘胡兰一样视死如归。离开江苏海涛州后马启明直奔妻子那里,帮她办理调动手续。当拿到妻子的调动手续后,马启明激动坏了,在调动手续上连亲了3口。后半夜突然醒来,他像个傻子一样望着调动手续“嘿嘿嘿”地直傻笑,妻子从睡梦中猛然醒来、吓呆了,以为他有精神病,摸了摸他的额头,说:“没发烧啊!”继而又对马启明说:“年轻人,淡定淡定!”1993年4月,春夏季交替之际,他们赶到马启明的家里。虽然马启明单位与主管部门不放行,但有海涛州人事局的事先承诺,马启明索性也不办理正常调动手续,只带了毕业证,伟大的爱情力量使他义无反顾地与妻子刘丽娟一起带着简单的行囊,坐上东去的火车,雄赳赳、气昂昂地赶往千里之外长江之边的一座滨江小镇,奔向自己心仪的江苏花开啤酒厂,就像当年参加红军一样。“暂时再见了!陕西生我养我的故乡!”马启明一脸的幸

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论