地下工程监测与检测技术第三章基坑工程监测_第1页
地下工程监测与检测技术第三章基坑工程监测_第2页
地下工程监测与检测技术第三章基坑工程监测_第3页
地下工程监测与检测技术第三章基坑工程监测_第4页
地下工程监测与检测技术第三章基坑工程监测_第5页
已阅读5页,还剩77页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、地下工程监测与检测技术第三章 基坑工程监测人民交通出版社 基坑工程监测的目的 基坑工程监测的内容及测试方法 基坑工程监测的相关规定 工程实例内容提要与自然地质条件密切相关与环境密切相关与基坑工程的施工密切相关技术综合性强第一节 基坑工程监测的目的一.基坑工程的特点二. 基坑工程监测的必要性坍塌前基坑南侧支护北京某地铁车站基坑坍塌事故坍塌后供水管线断裂情况 从西向东看基坑南侧污水管线情况三. 基坑监测的目的为施工开展提供及时的反馈信息确保基坑支护结构和相邻建筑物的安全作为设计与施工的重要补充手段作为施工开挖方案修改的依据积累经验以提高基坑工程的设计和施工水平监测数据也是解决法律纠纷的有力证据监测

2、工作还是发展设计理论的重要手段 第二节 基坑工程监测的内容及测试方法一 .监测内容 基坑监测项目根据基坑侧壁安全等级确定,可参照建筑基坑工程监测技术规范(GB50497-2009)执行。 监测的基本要求 有计划的监测工作,编制监测方案; 监测数据的真实性和可靠性; 监测数据的及时性,动态控制,全程控制; 警戒值的确定及相应的预警方案; 监测资料的完整性。基坑工程监测项目一览表基坑工程现场监测内容及测试方法1. 监测方法选择的基本要求(1)所采用的监测方法必须是可靠的和已被工程实践证明是准确的;(2)监测方法须简便易行,适合施工现场条件和快速变化的施工速度;(3)采用的监测方法和埋设的测量元件或

3、探头不影响和妨碍结构的正 常受力,或有损结构的变形和强度特性(4 )监测方法不应是单一的,需采用多种手段、施行多项内容、设置多 道防线的测试方案监测数据的及时性,动态控制,全程控制;二 .监测方法 变形监测内容监测目的沉降监测地表沉降基坑开挖对地表的影响临近建筑物沉降基坑开挖对临近建筑物的影响地下管线变形基坑开挖对管线的影响土层分层沉降基坑开挖对深层土体、围护结构的影响基坑回弹基坑开挖对坑底的影响水平位移监测地表水平位移基坑开挖对周围土体的影响深层水平位移基坑开挖对周围土体和围护结构的影响2. 变形监测 地表水平位移监测 地表水平位移一般包括墙(坡)顶、地表面及地下管线的水平位移。 常用的监测

4、仪器有GPS、全站仪、经纬仪等设备。 地表水平位移监测基准点应埋设在基坑开挖深度3倍范围以外不受施工影响的稳定区域,或利用已有稳定的施工控制点。基准点设置 视准线法是沿基坑边设置一条视准线,并在视准线的两端埋设两个永久工作基点A、B,A、B位于基坑两端不动位置处;在基坑边AB方向线上有代表性的位置设置观测点1,2,3. ,间距一般为815m,监测基坑开挖过程中1,2,3等点相对于AB连线的位移。视准线法测墙顶位移 基本原理地表面立面图 平面图ABAB35H35H视准线测点间距815m布置在地表或支护结构砼圈梁上50mm120mmABCD 有支护基坑基本原理测量方法之视准线法AB经纬仪 观测时,

5、经纬仪先后视固定觇标进行定向,然后再观测各观测点上的活动觇标,读数。固定觇标活动觇标 每个测点照准3次,观测顺序先由近及远,再由远及近;观测结束时,再照准B,判定观测过程中仪器是否移动,若有则重测。 A点观测完毕,将仪器移至B点,重新观测。 第一次观测值与以后观测值之差,即为水平位移。 观测方法活动觇标观测法2H测站点A观测点TS2S固定点A2H观测点TS2Sb测站点A固定点A优点:适用范围广,精度高,直观性强,操作简单; 在位移量超过觇标活动范围时,仍能使用;缺点:只能测出垂直与视准线方向的位移分量, 难以确切测出位移方向。测量方法之小角度法(1)监测设备测斜管测头电缆测度仪测斜仪测斜管埋设

6、在围护结构或土体中;量测时将测头沿管壁上导槽滑入测斜管内;由电缆将测斜管水平位移反映在测读仪上。 深层水平位移监测(2)测斜原理测斜仪量测的原理图底端作为基准点:顶端作为基准点:基准点0基准点(3)测斜管的埋设原则和方法方式一绑扎埋设方式二:钻孔埋设空隙内充填细砂或水泥黏土拌合物管内灌水加盖并砌井方式三:预制埋设 埋设原则连接牢固;滑槽严格对准; 管壁与土密帖;加强测点保护。基准点设定:管顶,管底每次测定坐标连接仪器设备,测头放入测斜管,每0.5测读测斜管倾角读数完毕之后,进行下一点测试全部测试完毕,提出测头,旋转180度,再次施测每次读数位置相同(5)资料分析得出水平位移随深度的分布曲线(4

7、)测试方法(1)监测范围H2-3H2-3H (2)监测仪器:精密水准仪器,铟钢水准尺基准点测点 沉降监测(3)基准点的设置设置原则: 稳定、可靠;至少设置3个;设置位置: 基坑开挖影响范围之外(至少大于5倍基坑开挖深度处) ;基岩或原状土层,沉降稳定的构筑物基础上;要考虑测量和通视的便利。 特例:土层较厚;条件受限,需在变形区内设置时15mm钢筋打入地下11.5m5H;3050m基准点顶面用砼加固23H23H由密到疏布置测点;测点宜设在基坑纵横轴线或其他有代表性的部位。沿基坑纵向每隔30m左右布设一个监测断面。 沉降监测之地表沉降监测(1)监测断面布置(2)断面间距(1)监测点数量和位置选择的

8、影响因素 开挖的影响范围;建筑物的体形、结构形式;工程地质条件;建筑物的重要性。612m重型或动力设备基础一般建筑物圆形和多边形建筑物基础类型、埋深、荷载突变新老建筑物长大建筑物沉降缝工业厂房独立柱基箱形基础(2)监测点的布置 沉降监测之临近建筑物沉降监测 (1)设置原则:从基坑边缘至3倍开挖深度范围内的地下管线(2)测点布置:管线的端点转角点接头长管线的中间部位 (3)管线监测常用方法:抱箍法,套管法管线抱箍测杆窨井现有路面井盖填土测杆硬塑料管或金属管管线现有路面填土抱箍法套管法优点精度高简单易行缺点凿路,开挖深度大观测精度低适用次级干道特别重要管道如燃气管道绝大部分管线 沉降监测之地下管线

9、沉降监测(1)监测设备及其安装沉降管磁环测头基点测尺输出讯号指示器分层磁性沉降仪 沉降监测之土体分层沉降监测(2)监测原理及方法沉降管磁环测头基点测尺输出讯号指示器 磁环随土层沉降而下沉,当探头遇到预埋的磁环时,干簧管的触点便在磁场的引力作用下吸合,接通指示电路,发出蜂鸣声。H (沉降环标高) = Hj (基准点标高) -L (测头至基点距离) H (某高程处土的沉降) = H0 (基坑开挖前沉降环标高) - Ht (基坑开挖后沉降环的标高)套管钻杆原始地面基坑设计标高200mm400500mm500mm素土(1)回弹标及其埋设(2)沉降标及其埋设英寸钢管1英寸钢管3卡锚头原始地面量测土层标高

10、1个锚头长度钻孔底面量程范围 沉降监测之基坑回弹监测(3)监测点的设置(4)基坑回弹监测方法使用仪器:精密水准仪基坑平面方法: 量测监测点在基坑施做过程中高程的变化,一般在监测点埋设好之后、基坑开挖到底之后和基坑内部结构物施做之前进行量测。(1)用途 基坑围护结构沿深度方向的弯矩; 基坑支撑结构的轴力和弯矩; 圈梁或围檩的平面弯矩; 结构底板所受的弯矩。(2)仪器 传感器:钢筋应力计(钢弦式和电阻应变式);砼应变计; 监测仪表:频率仪或电阻应变仪;3. 支护结构内力监测钢弦式钢筋应力计 1240mm量测砼内钢筋应力砼应变计10cm,15cm量测砼内应变量量测砼支撑轴力(3)应力计、应变计的安装

11、 钢筋应力计: 割断主筋,与结构主筋串联焊接;在混凝土结构内相对的钢筋层上对称布置;矩形断面可布置在4个角点处。混凝土应变计:并在结构主筋附近(与主筋并联);伸出两边的钢筋长度不小于砼长度的35倍;钢筋计安装(4)墙体内力的监测: 在墙体钢筋砼内埋设钢筋计,测定受力钢筋的应力或应变; 计算求得其内力。墙体内力监测点的布置 平面上: 弯矩最大处;支撑间距最大处;受力较复杂处;有代表性的地方;立面上: 弯矩最大处;反弯点位置;两道支撑(土锚)的跨中;内支撑及拉锚所在位置;各土层的分界面、配筋率改变处。平面上:轴力最大的支撑;支撑间距最大处的支撑; 受力较复杂的支撑;有代表性的支撑;立面上:平面测点

12、对应的每道支撑处都应测。支撑轴力监测点的布置 混凝土支撑轴力监测截面应取支撑中部;钢支撑轴力监测截面应取支撑端部。(5)支撑轴力监测 钢筋砼支撑 钢筋应力计测量钢筋应力;砼应变计测定砼应变; 换算得支撑轴力。 对于后三种监测方法:每个截面上均匀布置3个或4个监测元件;根据钢支撑截面积和平均应变,可以计算其轴力。 钢支撑 在钢支撑端部安装轴力计(串联),直接测得轴力; 在钢支撑表面焊接钢弦式表面应变计,用频率计或应变仪测读; 在钢支撑表面粘贴电阻应变片,用应变仪测读; 在钢支撑上安装位移计或千分表,测得钢支撑变形。埋设锚杆拉力计安装在承压板与锚头之间;钢筋应力计:割断钢筋,与钢筋串联焊接;钢筋应

13、变计:焊在钢筋或钢管上(与锚杆并联连接)。(6)土层锚杆监测 仪器和原理 锚杆拉力计、频率仪或电阻应变仪,直接测得锚杆拉力; 钢筋应力计、频率仪或电阻应变仪,钢筋拉力乘以钢筋数量; 钢筋应变计、频率仪或电阻应变仪,计算钢筋拉力,乘以钢筋数量。平面上: 拉力最大的锚杆;间距最大处的锚杆;平面形状较复杂处的锚杆;有代表性的锚杆;每道土层锚杆中至少测2根;锚杆长度、型式、穿越的土层不同时,每种情况至少测2根;立面上: 平面测点对应的每道锚杆处都应测。土层锚杆监测点的布置 土压力的大小直接决定着挡土结构物的稳定和安全;土压力的分布在基坑开挖中呈现动态变化;土体中的应力状态与土中的孔隙水压力和排水条件

14、密切相关;超孔压、渗流?为什么要量测?量测的目的验证挡土构筑物各特征部位的土压力及其沿深度分布规律;监测开挖过程中土压力和孔隙水压力的变化;急剧变化时,采取措施。积累各种条件下的土压力和孔隙水压力分布规律,为优化设计提供依据。4. 土压力和孔隙水压力量测监测设备钢弦式土压力盒p总压力;k压力计率定常数;f0压力计零压是的频率;f压力计受压后频率;土压力盒测得的压力为土压力和孔隙水压力总和。土压力盒使用之前必须标定。(1)土压力量测土压力盒的选用长期静态量测,宜选用钢弦式;量程比预计压力大2-4倍;较好的密封防水新能;导线采用双芯带屏蔽的橡胶电缆,中间不允许有接头; 土压力盒的布置能反映代表性位

15、置处的土反力变化规律;代表性的结构断面和土层;反力变化较大的区域密布,不大的区域疏布;特殊情况希望解释特定现象的位置;理论计算不能得到精确解答的位置。土压力盒的埋设方法预先安装法:适用于钢板桩或钢筋混凝土预制构件;挂布法:适用于地下连续墙;弹入法:适用于地下连续墙;活塞压入法:适用于地下连续墙;钻孔法:适用于土层中。预先安装法土压力传感器的应力膜与构筑物表面平齐,即结构的迎土面挂布法弹入法绘制土压力随时间和深度的变化过程曲线。 (2)孔隙水压力量测监测设备u孔隙水压力;k压力计率定常数;f0压力计零压是的频率;f压力计受压后频率;仪器:孔隙水压力传感器(孔隙水压力计)和频率仪。孔隙水压力计的量

16、程取测点深度处水柱的1.52.0倍。原理:探头由金属壳体和透水石组成。孔隙水压力计的工作原理是把多孔元件(如透水石)放置在土中,把土体颗粒隔离在元件外面,而只让水进入有感应膜的容器内,再测量容器中的水压力,即可测出孔隙压力。孔隙水压力计的埋设方法压入法:直接将孔隙水压力计压到埋设深度,或先钻孔至埋设深度以上1m处,再将孔隙水压力计压至埋设深度,用粘土球封孔至孔口。适用于较软土质。钻孔法:适用于土层中,原则上一个钻孔只能埋设一个探头。注意事项使用前:探头煮沸排气饱和;测量初始频率。安装时:测头至于有水的塑料袋,避免与大气接触缺点: 压入法:压入产生土体挠动,引起超孔压,影响量测精度 钻孔法:探头

17、部位不可能达到原有密实度,影响量测精度水位管:钻有小孔的塑料花管,小孔为排水通道,孔径5mm,间距50cm,梅花形布置;管外包土工布挡泥砂,进行过滤。钢尺:普通钢尺,直接量测,需和水位观测井配合使用。PVC 水位管(1)监测仪器钢尺水位计钢尺水位计和水位探测仪:由探头、钢尺、电缆及指数灯、蜂鸣器、电压指示和绞盘等组成。探头放入埋设的水位管中,遇水发出蜂鸣声或电压指示等信号,由钢尺电缆上的刻度直接读出水位深度。5. 地下水位监测(2)钻孔埋设注意事项 钻孔后放入底部加盖的水位管; 在水位管与孔壁间用干净细砂填实,之后用清水冲洗孔底,以防泥浆堵塞测孔; 水位管与孔壁间最上面2米用黏土球封孔; 水位

18、管高出地面约200mm,上面加盖; 做好水位观测井的保护装置。一般只要设置在止水帏幕以外即可;搅拌桩施工搭接处;相邻建筑(构)物处;地下管线相对密集位置;管底标高一般在常年水位以下45m。(3)坑外地下水位观测布置要求潜水水位监测示意图承压水水位监测示意图第三节 基坑工程监测的相关规定一 .监测点布置原则 基坑工程监测点可分为基坑及支护结构监测点和周围环境监测点两大类,监测点应该根据具体情况合理布置,可参照建筑基坑工程监测技术规范(GB50497-2009)执行。具体内容参见前面各章节内容及教材和规范内容。二、监测期限与频率基坑开挖和地下结构施工全过程;连续开展,全程监控(1)监测期限(2)监

19、测频率 基坑工程监测频率的确定应能满足系统反映监测对象所测项目的重要变化过程而又不遗漏其变化时刻的要求。因此基坑工程的监测频率不是一成不变,而是根据基坑开挖及地下工程的施工进程、施工工况以及其他外部环境影响因素的变化及时地作出调整。现场仪器监测的监测频率 (建筑基坑工程监测技术规范(GB50497-2009))几点说明在基坑开挖前,取连续3次测量无明显差异时的测值为初读数;支撑(土锚)内等需随施工进度而埋设的元件,在埋设后读取初读数;埋设在土层中的元件(土压力盒、孔隙水压力计、测斜管和分层沉降环等)最好在基坑开挖1周前埋设;监测频率应随基坑状况、变化速率而作适当调整。监测数据必须现场整理,有疑

20、问及时复测;接近或达到警戒值及时告知,采取措施。三、监测警戒值与警报(1) 警戒值确定的原则警戒值的作用:判断位移或受力状况是否超出允许的范围;工程是否安全可靠;是否需要调整施工步骤或优化原设计方案。确定原则 满足设计计算的要求(支护结构内力控制),不可超出设计值。 满足现行规程、规范的要求(位移或变形量控制),不可超出规定允许值; 满足保护对象的要求(对象的安全使用状态),不致保护对象出现破坏; 综合考虑工程质量、施工进度、技术措施和经济警戒值的组成:总允许变化量和单位时间允许变化量 合理,经济,安全,可靠,不宜过大或过小(2 )警戒值的确定预警值的确定依据基坑的规模、地质、水文及其周边环境

21、情况;基坑的施工方案;现行的相关规范、规程(最大允许位移和变形值) ;设计计算预估值(围护结构和支撑轴力、锚杆拉力等);各保护对象的主管部门提出的要求(最大允许位移和变形值);经验类比、专家会议。建筑基坑工程周边环境监测报警值(建筑基坑工程监测技术规范(GB50497-2009)经验类比值(参考)监测统计分析对比报警安全分析原因采取措施位移时程曲线变形加速度小于0,则该工程是稳定的;变形加速度等于0,工程进入“定常蠕变”状态,须发出警告;变形加速度大于0,工程进入“危险状态”,须立即停工,进行加固。各种时程曲线、特征曲线发生明显转折点或突变点,也应引起重视。报警:接近警戒值;出现突然变化;变化

22、随时间不趋于稳定(3) 监测报警预警制度达到报警值的80%时,在日报表上作预警记号,口头报告管理人员;达到报警值的100%时,在日报表上作报警记号,写出书面报告面交管理人员;达到报警值的110%时,在日报表上作紧急报警记号,写出书面报告外,通知主管工程师立即到现场调查,开现场会,研究应急措施。四、监测报表与监测报告 各监测项目时程曲线;各监测项目的速率时程曲线;各监测项目在不同工况和特殊日期变化发展形象图。 如:围护墙顶、建筑物和管线的水平位移平面图;深层侧向位移曲线;不同深度的孔隙水压力和土压力曲线。 日报表:及时报监理;存档; 周报表:作为参加工程例会的书面文件;一周监测成果的汇报;阶段报

23、表:阶段成果总结,掌握施工中基坑工作形状和发展趋势。 简单直观,尽可能采用图形或曲线;数据不得随意修改和删除;异常点应说明;(1) 监测报表(2) 监测曲线工程概况;监测项目和各测点的平面和立面布置图;所采用的仪器设备和监测方法;监测数据处理方法、监测结果汇总表、有关汇总和分析曲线;对监测结果的评价。(3) 监测报告工程概况 车站为地下两层三跨岛式站台,主体结构呈南北走向,轨顶标高28.986m,埋深15.6m左右,主体结构南北长179.40 m,其中南段长约57.60 m,宽3300m;中间段长为56.40m,宽为23.10m;北段长约65.40m,宽42.70 m。该站结构底板标高27.2

24、96m,底板埋深为17.11417.564m。主体结构顶板标高为35.60m左右,顶板埋深为9.0m左右。第四节 工程实例实例一:森林公园南门地铁车站北部深基坑围护结构变形特性监测基坑围护方案 基坑剖面及土层分布车站主体北区基坑剖面监测方案 (1) 测点布置 围护桩桩体水平位移(桩体变形)监测点布置,在基坑东西两长边中点的围护桩上各布置一个桩体水平位移监测点,编号为CX4和CX5;围护桩钢筋内力监测点与桩体水平位移监测点布置在同一根围护桩上,编号为L4和L5。钢支撑轴力监测点布置,基坑内钢支撑共有两层(11断面为三层),每15m布置一个轴力监测点,第一层监测点编号为Z1-8Z1-14,第二层监测点编号为Z2-8Z2-14,第三层监测点编号为Z3,共15个监测点。 (2)监测仪器 桩体变形采用CX系列钻孔测斜仪测量;锚索应力采用钢弦式锚索应力计和SS型频率计数器测量;钢支撑

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论