三角形中位线定理几种证明方法教学中需要说明地方_第1页
三角形中位线定理几种证明方法教学中需要说明地方_第2页
三角形中位线定理几种证明方法教学中需要说明地方_第3页
三角形中位线定理几种证明方法教学中需要说明地方_第4页
三角形中位线定理几种证明方法教学中需要说明地方_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、-. z三角形中位线定理的证明及其教学说明以下容作者为:第四中学瀚书教师一、 三角形中位线定理的几种证明方法法1: 如下图,延长中位线DE至F,使,连结CF,则,有AD FC,所以FC BD,则四边形BCFD是平行四边形,DF BC。因为,所以DE 法2:如下图,过C作交DE的延长线于F,则,有FC AD,则FC BD,则四边形BCFD为平行四边形,DF BC。因为,所以DE 法3:如下图,延长DE至F,使,连接CF、DC、AF,则四边形ADCF为平行四边形,有AD CF,所以FC BD,则四边形BCFD为平行四边形,DF BC。因为,所以DE 法4:如下图,过点E作MNAB,过点A作AMBC

2、,则四边形ABNM为平行四边形,易证,从而点E是MN的中点,易证四边形ADEM和BDEN都为平行四边形,所以DE=AM=NC=BN,DEBC,即DE。法5:如下图,过三个顶点分别向中位线作垂线二、教学说明1、三角形中位线定理的另外一种猜测过程:二维转化为一维在引导学生探索三角形中位线定理时,由于学生画出中位线后,就不难直观地发现平行关系,难的是发现数量关系,我联想到在此之前认识线段中点时的一道典型例题,挖掘它与原有知识的在联系,从而作如下探索引导。如图,A为线段BC(或线段BC的延长线)上的任意一点,D、E分别是AB、AC的中点,线段DE与BC有什么关系.图:如果点A不在直线BC上,图形如何变

3、化.上述结论仍然成立吗图:说明:学生观察几何画板制作的课件演示:当ABC的顶点A运动到直线BC上时,中位线DE也运动到BC上,这样由二维转化为一维,学生就不难猜测性质的两方面,特别是数量关系,而想到去度量、验证和猜测,水到渠成.如果教师直接叫学生去度量角度和长度,是强扭的瓜不甜.2、教学重点:本课重点是掌握和运用三角形中位线定理。第一,要知道中位线定理的作用:可以证明两条直线平行及线段的倍分关系,计算边长或中位线的长。第二,要知道中位线定理的使用形式,如: DE是ABC的中位线 DEBC,第三,让学生通过局部题目进展训练,进而掌握和运用三角形中位线定理。题1 如图4.11-7,RtABC,BA

4、C90,D、E分别为AB,BC的中点,点F在CA延长线上,FDAB.(1)求证:AFDE;(2)假设AC6,BC10,求四边形AEDF的周长.分析 此题是考察知识点较多的综合题,它不但考察应用三角形中位线定理的能力,而且还考察应用直角三角形和平行四边形有关性质的能力。(1)要证AFDE,因为它们刚好是四边形的一组对边,这就启发我们设法证明AEDF是平行四边形.因为DE是三角形的中位线,所以DEAC.又题给条件FDAB,而在RtABC中,因AE是斜边上的中线,故AEEB.从而EABB.于是EABFDA.故得到AEDF.所以四边形AEDF为平行四边形.(2)要求四边形AEDF的周长,关键在于求AE

5、和DE,AEBC5,DEAC3.证明:(1)D、E分别为AB、BC的中点,DEAC,即DEAFRtABC中,BAC90,BEECEAEBBC,EABB又FDAB,EABFDAEADF,AEDF为平行四边形AFDE(2)AC6,BC10,DEAC3,AEBC5四边形AEDF的周长2(AE+DE)2(3+5)16题2 如图,在四边形ABCD中,ABCD,E、F分别是BC、AD的中点,延长BA和CD分别与EF的延长线交于K、H。求证:BKECHE.分析 此题考察三角形中位线的构造方法及应用、平行线的性质.由中点想到中位线,又要把结论联系起来,既要使中位线的另一端点处一理想的位置,又使需证明的角转移过

6、来,可考虑,连BD,找BD中点G,则EG、FG分别为BCD、DBA的中位线,于是得到了解题方法.考虑到结论辅助线不要乱作,取中点比作平行线好.证明:连BD并取BD的中点G,连FG、GE在DAB和BCD中F是AD的中点,E是BC的中点FGAB且FGAB,EGDC且EGDCBKEGFE,CHEGEFABCD FGEGGFEGEF BKECHE题3 如图, ABCD为等腰梯形,ABCD,O为AC、BD的交点,P、R、Q分别为AO、DO、BC的中点,AOB60。求证:PQR为等边三角形.分析 此题考察三角形中位线定理、等边三角形判定方法、直角三角形斜边中线定理。利用条件可知PRAD,能否把PQ、RQ与

7、AD(BC)联系起来成为解题的关键,由于AOB60,ODOC,则ODC为等边三角形,再由R为OD中点,则BRC90,QR就为斜边BC的中线.证明:连RC,四边形ABCD为等腰梯形且ABDCADBC ADCBCD又DC为公共边 ADCBCDACDBDC ODC为等腰三角形DOCAOB60 ODC为等边三角形R为OD的中点ORC90DRC(等腰三角形底边上的中线也是底边上的高)Q为BC的中点 RQBCAD同理PQBCAD在OAD中 P、R分别为AO、OD的中点PRAD PRPQRQ故PRQ为等边三角形3、教学难点:本课难点是三角形中位线定理的证明,证明方法的关键在于如何添加辅助线教师可以在证明思路

8、上进展引导、启发,防止生硬地将辅助线直接作出来让学生承受。例如,教师可以启发学生:要证明一条线段的长等于另一条线段的长的一半,可将较短的线段延长一倍,或者截取较长的线段的一半。上面的这种辅助线的作法可以概括为短延长、长截短,这种辅助线的作法还可以用于证明线段和、差、倍、分等方面。证明线段的和、差、倍、分常用的证明策略:1,长截短:要证明一条线段等于另外两条线段的和与差,可在长线上截取一局部等于另两条线段中的一条,然后再证明另一局部等于剩下的一条线段的长。角也亦然2,短延长:要证明一条线段等于另外两条线段的和与差,可先延长较短的一条线段,得到两条线段的和,然后再证明其与长的线段相等。角也这样3,

9、加倍法:要证明一条线段等于另一条线段的2倍或1/2,可加倍延长线段,延长后使之为其2倍,再证明与另一条线段相等。角也这样4,折半法:要证明一条线段等于另一条线段的2倍或1/2,也可取长线段的中点,再证明其中之一与另一条线段相等。角也可用5,代数运算推理法:这种方法是利用代数运算证明线段或角的和、差、倍、分。6,相似三角形及比例线段法:利用相似三角形的性质进展推理论证。题1短延长:如下图,在正方形ABCD中,P、Q分别为BC、CD上的点。1假设PAQ=45,求证:PB+DQ=PQ。2假设PCQ的周长等于正方形周长的一半,求证:PAQ=45证明:1延长CB至E,使BE=DQ,连接AE。四边形ABCD是正方形ABE=ABC=D=90,AB=AD在ABE和ADQ中AB=AD,ABE=D,BE=DQ2延长

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论