2022年必考点解析沪教版(上海)八年级数学第二学期第二十二章四边形同步练习试卷(精选含答案)_第1页
2022年必考点解析沪教版(上海)八年级数学第二学期第二十二章四边形同步练习试卷(精选含答案)_第2页
2022年必考点解析沪教版(上海)八年级数学第二学期第二十二章四边形同步练习试卷(精选含答案)_第3页
2022年必考点解析沪教版(上海)八年级数学第二学期第二十二章四边形同步练习试卷(精选含答案)_第4页
2022年必考点解析沪教版(上海)八年级数学第二学期第二十二章四边形同步练习试卷(精选含答案)_第5页
已阅读5页,还剩25页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、八年级数学第二学期第二十二章四边形同步练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在RtABC中,C90,若D为斜边AB上的中点,AB的长为10,则DC的长为( )A5B4C3D22、已知三角形三

2、边长分别为7cm,8cm,9cm,作三条中位线组成一个新的三角形,同样方法作下去,一共做了五个新的三角形,则这五个新三角形的周长之和为( )A46.5cmB22.5cmC23.25cmD以上都不对3、如图,以O为圆心,长为半径画弧别交于A、B两点,再分别以A、B为圆心,以长为半径画弧,两弧交于点C,分别连接、,则四边形一定是( )A梯形B菱形C矩形D正方形4、如图,在ABC中,AC=BC=8,BCA=60,直线ADBC于点D,E是AD上的一个动点,连接EC,将线段EC绕点C按逆时针方向旋转60得到FC,连接DF,则在点E的运动过程中,DF的最小值是( )A1B1.5C2D45、如图,在正方形有

3、中,E是AB上的动点,(不与A、B重合),连结DE,点A关于DE的对称点为F,连结EF并延长交BC于点G,连接DG,过点E作DE交DG的延长线于点H,连接,那么的值为( )A1BCD26、如果一个多边形的外角和等于其内角和的2倍,那么这个多边形是( )A三角形B四边形C五边形D六边形7、如图,已知在正方形ABCD中,厘米,点E在边AB上,且厘米,如果点P在线段BC上以2厘米/秒的速度由B点向C点运动,同时,点Q在线段CD上以a厘米/秒的速度由C点向D点运动,设运动时间为t秒若存在a与t的值,使与全等时,则t的值为( )A2B2或1.5C2.5D2.5或28、如图,过点O作直线与双曲线y(k0)

4、交于A,B两点,过点B作BCx轴于点C,作BDy轴于点D在x轴、y轴上分别取点E,F,使点A,E,F在同一条直线上,且AEAF设图中矩形ODBC的面积为S1,EOF的面积为S2,则S1,S2的数量关系是()AS1S2B2S1S2C3S1S2D4S1S29、矩形ABCD的一条对角线长为6,边AB的长是方程的一个根,则矩形ABCD的面积为( )AB12CD或10、在ABCD中,AC=24,BD=38,AB=m,则m的取值范围是( )A24m39B14m62C7m31D7m12第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、一个正多边形的每一个内角比每一个外角的5倍还小60,

5、则这个正多边形的边数为_2、如图,在平行四边形ABCD中,E、F分别在CD和BC的延长线上,则_3、如图,M,N分别是矩形ABCD的边AD,AB上的点,将矩形ABCD沿MN折叠,使点A恰好落在边BC上的点E处,连接MC,若AB8,AD16,BE4,则MC的长为_4、如果一个矩形较短的边长为5cm,两条对角线的夹角为60,则这个矩形的对角线长是_cm5、一个五边形共有_条对角线三、解答题(5小题,每小题10分,共计50分)1、如图,在正方形中,是直线上的一点,连接,过点作,交直线于点,连接(1)当点在线段上时,如图,求证:;(2)当点在直线上移动时,位置如图、图所示,线段,与之间又有怎样的数量关

6、系?请直接写出你的猜想,不需证明2、如图,在RtABC中,ACB90,B30,AB20点P从点B出发,以每秒2个单位长度的速度沿BC向终点C运动,同时点M从点A出发,以每秒4个单位的速度沿AB向终点B运动,过点P作PQAB于点Q,连结PQ,以PQ、MQ为邻边作矩形PQMN,当点P运动到终点时,整个运动停止,设矩形PQMN与RtABC重叠部分图形的面积为S(S0),点P的运动时间为t秒(1)BC的长为 ;用含t的代数式表示线段PQ的长为 ;(2)当QM的长度为10时,求t的值;(3)求S与t的函数关系式;(4)当过点Q和点N的直线垂直于RtABC的一边时,直接写出t的值3、如图,四边形是平行四边

7、形,为对角线(1)尺规作图:请作出的垂直平分线,分别交,于点,连接,不写作法,保留作图痕迹;(2)请判断四边形的形状,并说明理由4、如图,平行四边形ABCD中,点E、F分别在CD、BC的延长线上,(1)求证:D是EC中点;(2)若,于点F,直接写出图中与CF相等的线段5、如图,是的中位线,延长到,使,连接求证:-参考答案-一、单选题1、A【分析】利用直角三角形斜边的中线的性质可得答案【详解】解:C=90,若D为斜边AB上的中点,CD=AB,AB的长为10,DC=5,故选:A【点睛】此题主要考查了直角三角形斜边的中线,关键是掌握在直角三角形中,斜边上的中线等于斜边的一半2、C【分析】如图所示,D

8、E,DF,EF分别是三角形ABC的中位线,GH,GI,HI分别是DEF的中位线,则,即可得到DEF的周长,由此即可求出其他四个新三角形的周长,最后求和即可【详解】解:如图所示,DE,DF,EF分别是三角形ABC的中位线,GH,GI,HI分别是DEF的中位线,DEF的周长,同理可得:GHI的周长,第三次作中位线得到的三角形周长为,第四次作中位线得到的三角形周长为第三次作中位线得到的三角形周长为这五个新三角形的周长之和为,故选C【点睛】本题主要考查了三角形中位线定理,解题的关键在于能够熟练掌握三角形中位线定理3、B【分析】根据题意得到,然后根据菱形的判定方法求解即可【详解】解:由题意可得:,四边形

9、是菱形故选:B【点睛】此题考查了菱形的判定,解题的关键是熟练掌握菱形的判定方法菱形的判定定理:四条边都相等四边形是菱形;一组邻边相等的平行四边形是菱形;对角线垂直的平行四边形是菱形4、C【分析】取线段AC的中点G,连接EG,根据等边三角形的性质以及角的计算即可得出CD=CG以及FCD=ECG,由旋转的性质可得出EC=FC,由此即可利用全等三角形的判定定理SAS证出FCDECG,进而即可得出DF=GE,再根据点G为AC的中点,即可得出EG的最小值,此题得解【详解】解:取线段AC的中点G,连接EG,如图所示AC=BC=8,BCA=60,ABC为等边三角形,且AD为ABC的对称轴,CD=CG=AB=

10、4,ACD=60,ECF=60,FCD=ECG,在FCD和ECG中,FCDECG(SAS),DF=GE当EGBC时,EG最小,点G为AC的中点,此时EG=DF=CD=BC=2故选:C【点睛】本题考查了等边三角形的性质以及全等三角形的判定与性质,三角形中位线的性质,解题的关键是通过全等三角形的性质找出DF=GE,本题属于中档题,难度不大,解决该题型题目时,根据全等三角形的性质找出相等的边是关键5、B【分析】作辅助线,构建全等三角形,证明DAEENH,得AE=HN,AD=EN,再说明BNH是等腰直角三角形,可得结论【详解】解:如图,在线段AD上截取AM,使AM=AE, AD=AB,DM=BE,点A

11、关于直线DE的对称点为F,ADEFDE,DA=DF=DC,DFE=A=90,1=2,DFG=90,在RtDFG和RtDCG中,RtDFGRtDCG(HL),3=4,ADC=90,1+2+3+4=90,22+23=90,2+3=45,即EDG=45,EHDE,DEH=90,DEH是等腰直角三角形,AED+BEH=AED+1=90,DE=EH,1=BEH,在DME和EBH中,DMEEBH(SAS),EM=BH,RtAEM中,A=90,AM=AE, ,即=故选:B【点睛】本题考查了正方形的性质,全等三角形的判定定理和性质定理,等知识,解决本题的关键是作出辅助线,利用正方形的性质得到相等的边和相等的角

12、,证明三角形全等6、A【分析】多边形的外角和是360度,多边形的外角和是内角和的2倍,则多边形的内角和是180度,则这个多边形一定是三角形【详解】解:多边形的外角和是360度,又多边形的外角和是内角和的2倍,多边形的内角和是180度,这个多边形是三角形故选:A【点睛】考查了多边形的外角和定理,解题的关键是掌握多边形的外角和定理7、D【分析】根据题意分两种情况讨论若BPECQP,则BP=CQ,BE=CP;若BPECPQ,则BP=CP=5厘米,BE=CQ=6厘米进行求解即可.【详解】解:当,即点Q的运动速度与点P的运动速度都是2厘米/秒,若BPECQP,则BP=CQ,BE=CP,AB=BC=10厘

13、米,AE=4厘米,BE=CP=6厘米,BP=10-6=4厘米,运动时间t=42=2(秒);当,即点Q的运动速度与点P的运动速度不相等,BPCQ,B=C=90,要使BPE与OQP全等,只要BP=PC=5厘米,CQ=BE=6厘米,即可点P,Q运动的时间t=(秒).综上t的值为2.5或2.故选:D【点睛】本题主要考查正方形的性质以及全等三角形的判定,解决问题的关键是掌握正方形的四条边都相等,四个角都是直角;两边及其夹角分别对应相等的两个三角形全等同时要注意分类思想的运用8、B【分析】过点A作AMx轴于点M,根据反比例函数图象系数k的几何意义即可得出S矩形ODBC=-k、SAOM=-k,再根据中位线的

14、性质即可得出SEOF=4SAOM=-2k,由此即可得出S1、S2的数量关系【详解】解:过点A作AMx轴于点M,如图所示AMx轴,BCx轴,BDy轴,S矩形ODBC=-k,SAOM=-kAE=AFOFx轴,AMx轴,AM=OF,ME=OM=OE,SEOF=OEOF=4SAOM=-2k,2S矩形ODBC=SEOF,即2S1=S2故选:B【点睛】本题考查了反比例函数图象系数k的几何意义以及三角形的中位线,根据反比例函数图象系数k的几何意义找出S矩形ODBC=-k、SEOF=-2k是解题的关键9、D【分析】先求的两个根再根据矩形的性质,用勾股定理求得另一边长或,计算面积即可【详解】,(x-2)(x-5

15、)=0,另一边长为=或=,矩形的面积为2=或5=5,故选D【点睛】本题考查了矩形的性质,勾股定理,一元二次方程的解法,熟练解方程,灵活用勾股定理是解题的关键10、C【分析】作出平行四边形,根据平行四边形的性质可得,然后在中,利用三角形三边的关系即可确定m的取值范围【详解】解:如图所示:四边形ABCD为平行四边形,在中,即,故选:C【点睛】题目主要考查平行四边形的性质及三角形三边的关系,熟练掌握平行四边形的性质及三角形三边关系是解题关键二、填空题1、9【分析】设正多边形的外角为x度,则可用代数式表示出内角,再由内角与外角互补的关系得到方程,解方程即可求得每一个外角,再根据多边形的外角和为360度

16、即可求得正多边形的边数【详解】设正多边形的外角为x度,则内角为(5x60)度由题意得:解得:则正多边形的边数为:36040=9即这个正多边形的边数为9故答案为:9【点睛】本题考查了正多边形的内角与外角,关键是运用方程求得正多边形的外角2、8【分析】证明四边形ABDE是平行四边形,得到DE=CD, 过点E作EHBF于H,证得CH=EH,利用勾股定理求出EH,再根据30度角的性质求出EF【详解】解:四边形ABCD是平行四边形,AB=CD, ,四边形ABDE是平行四边形,DE=CD, 过点E作EHBF于H,ECH=,CH=EH, CH=EH=4,EHF=90,EF=2EH=8,故答案为:8【点睛】此

17、题考查了平行四边形的判定及性质,勾股定理,直角三角形30度角的性质,熟记各知识点并应用解决问题是解题的关键3、10【分析】过E作EFAD于F,根据矩形ABCD沿MN折叠,使点A恰好落在边BC上的点E处,得出ANMENM,可得AM=EM,根据矩形ABCD,得出B=A=D=90,再证四边形ABEF为矩形,得出AF=BE=4,FE=AB=8,设AM=EM=m,FM=m-4,根据勾股定理,即,解方程m=10即可【详解】解:过E作EFAD于F,矩形ABCD沿MN折叠,使点A恰好落在边BC上的点E处,ANMENM,AM=EM,矩形ABCD,B=A=D=90, FEAD,AFE=B=A=90,四边形ABEF

18、为矩形,AF=BE=4,FE=AB=8,设AM=EM=m,FM=m-4在RtFEM中,根据勾股定理,即,解得m=10,MD=AD-AM=16-10=6,在RtMDC中,MC=故答案为10【点睛】本题考查折叠轴对称性质,矩形判定与性质,勾股定理,掌握折叠轴对称性质,矩形判定与性质,勾股定理是解题关键4、10【分析】如图,由题意得:四边形为矩形,证明是等边三角形,结合矩形的性质可得答案.【详解】解:如图,由题意得:四边形为矩形, 是等边三角形, 故答案为:【点睛】本题考查的是等边三角形的判定与性质,矩形的性质,掌握“矩形的对角线相等且互相平分”是解本题的关键.5、5【分析】由n边形的对角线有: 条

19、,再把代入计算即可得【详解】解:边形共有条对角线,五边形共有条对角线故答案为:5【点睛】本题考查的是多边形的对角线的条数,掌握n边形的对角线的条数是解题的关键三、解答题1、(1)见解析;(2)图中,图中【分析】(1)在上截取,连接,可先证得,则,进而可证得AED为等腰直角三角形,即可得证;(2)仿照(1)的证明思路,作出相应的辅助线,即可证得对应的,与之间的数量关系【详解】解:(1)证明:如图,在上截取,连接四边形是正方形,ECF是等腰直角三角形,在中,;(2)图:,理由如下:如下图,在延长线上截取,连接四边形是正方形, ,ECF是等腰直角三角形, 在中,;图:如图,在DE上截取DF=BE,连

20、接四边形是正方形,ECF是等腰直角三角形,在中, 【点睛】本题是四边形综合题,考查了正方形的性质、全等三角形的判定及性质、等腰直角三角形、勾股定理等相关知识,正确作出辅助线构造全等三角形是解决本题的关键2、(1);(2)t的值为或;(3)S=-t2+20t或S=;(4)t=2s或s【分析】(1)由勾股定理可求解;由直角三角形的性质可求解;(2)分两种情况讨论,由QM的长度为10,列出方程可求解;(3)分两种情况讨论,由面积公式可求解;(4)分两种情况讨论,由含30角的直角三角形三边的比值可求解【详解】解:(1)ACB=90,B30,AB20,AC=10,BC=;PQAB,BQP=90,B=30

21、,PQ=,由题意得:BP=2t,PQ=t,故答案为:t;(2)在RtPQB中,BQ=3t,当点M与点Q相遇,20=AM+BQ=4t+3t,t=,当0t时,MQ=AB-AM-BQ,20-4t-3t=10,t=,当t=5时,MQ=AM+BQ-AB,4t+3t-20=10,t=,综上所述:当QM的长度为10时,t的值为或;(3)当0t时,S=PQMQ=t(20-7t)=-t2+20t;当t5时,如图,四边形PQMN是矩形,PN=QM=7t-20,PQ=t,B=30,MEBEBM=12,BM=20-4t,ME=,S=;(4)如图,若NQAC,NQBC,B=MQN=30,MNNQMQ=12,MQ=20-

22、7t,MN=PQ=,t=2,如图,若NQBC,NQAC,A=BQN=90-B=60,PQN=90-BQN=30,PNNQPQ=12,PN=MQ=7t-20,PQ=,t=,综上所述:当t=2s或s时,过点Q和点N的直线垂直于RtABC的一边【点睛】本题考查了矩形的性质,勾股定理,平行线的性质等知识,利用分类讨论思想解决问题是本题的关键3、(1)见解析,(2)菱形,理由见解析【分析】(1)利用基本作图,作线段AC的垂直平分线即可;(2)先根据线段垂直平分线的性质得到EAEC,FAFC,AGGC,再证明AGECGF得到AECF,根据四边相等可判断四边形AFCE为菱形(1)解:如图,EF、CE、AF为所作;(2)解:四边形AFCE为菱形理由如下:如图,EF垂直平分AC,ECEA,FCFA

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论