版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、八年级数学第二学期第二十二章四边形专题训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、菱形ABCD的周长是8cm,ABC60,那么这个菱形的对角线BD的长是()AcmB2cmC1cmD2cm2、n 边
2、形的每个外角都为 15,则边数 n 为( )A20B22C24D263、正八边形的外角和为( )ABCD4、如图,在ABC中,AC=BC=8,BCA=60,直线ADBC于点D,E是AD上的一个动点,连接EC,将线段EC绕点C按逆时针方向旋转60得到FC,连接DF,则在点E的运动过程中,DF的最小值是( )A1B1.5C2D45、已知三角形三边长分别为7cm,8cm,9cm,作三条中位线组成一个新的三角形,同样方法作下去,一共做了五个新的三角形,则这五个新三角形的周长之和为( )A46.5cmB22.5cmC23.25cmD以上都不对6、如图,以O为圆心,长为半径画弧别交于A、B两点,再分别以A
3、、B为圆心,以长为半径画弧,两弧交于点C,分别连接、,则四边形一定是( )A梯形B菱形C矩形D正方形7、在ABCD中,AC=24,BD=38,AB=m,则m的取值范围是( )A24m39B14m62C7m31D7m128、如图,矩形OABC的边OA长为2,边AB长为1,OA在数轴上,以原点O为圆心,对角线OB的长为半径画弧,交正半轴于一点,则这个点表示的实数是( )A2.5B2CD9、如图,四边形ABCD是平行四边形,下列结论中错误的是( )A当ABCD是矩形时,ABC90B当ABCD是菱形时,ACBDC当ABCD是正方形时,ACBDD当ABCD是菱形时,ABAC10、的周长为32cm,AB:
4、BC=3:5,则AB、BC的长分别为( )A20cm,12cmB10cm,6cmC6cm,10cmD12cm,20cm第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在矩形ABCD中,点E在AD边上,BCE是以BE为一腰的等腰三角形,若AB4,BC5,则线段DE的长为 _2、如图,在矩形中,将矩形绕点按顺时针方向旋转得到矩形,点落在矩形的边上,则的长是 _3、已知正方形ABCD的一条对角线长为2,则它的面积是_4、如图,点O是正方形ABCD的称中心O,互相垂直的射线OM,ON分别交正方形的边AD,CD于E,F两点,连接EF;已知(1)以点E,O,F,D为顶点的图形的面积
5、为_;(2)线段EF的最小值是_5、直线与双曲线的图象交于两点,以为邻边作现有以下结论:为菱形;若,则;可以是正方形,其中正确的是_(写出所有正确结论的序号)三、解答题(5小题,每小题10分,共计50分)1、在中,斜边,过点作,以AB为边作菱形ABEF,若,求的面积2、如图,在ABCD中,对角线AC,BD交于点O,E是BD延长线上一点,且ACE是等边三角形(1)求证:四边形ABCD是菱形;(2)若AED2EAD,ABa,求四边形ABCD的面积3、在中,将ABO绕点O逆时针方向旋转90得到(1)则线段的长是_,_(2)连接求证四边形是平行四边形;(3)求四边形的面积?4、如图,是的中位线,延长到
6、,使,连接求证:5、如图1,四边形ABCD和四边形CEFG都是菱形,其中点E在BC的延长线上,点G在DC的延长线上,点H在BC边上,连结AC,AH,HF已知AB2,ABC60,CEBH(1)求证:ABHHEF;(2)如图2,当H为BC中点时,连结DF,求DF的长;(3)如图3,将菱形CEFG绕点C逆时针旋转120,使点E在AC上,点F在CD上,点G在BC的延长线上,连结EH,BF若EHBC,请求出BF的长-参考答案-一、单选题1、B【分析】由菱形的性质得ABBC2(cm),OAOC,OBOD,ACBD,再证ABC是等边三角形,得ACAB2(cm),则OA1(cm),然后由勾股定理求出OB(cm
7、),即可求解【详解】解:菱形ABCD的周长为8cm,ABBC2(cm),OAOC,OBOD,ACBD,ABC60,ABC是等边三角形,ACAB2cm,OA1(cm),在RtAOB中,由勾股定理得:OB(cm),BD2OB2(cm),故选:B【点睛】此题考查了菱形的性质,勾股定理,等边三角形的性质和判定,解题的关键是熟练掌握菱形的性质,勾股定理,等边三角形的性质和判定方法2、C【分析】根据多边形的外角和等于360度得到15n360,然后解方程即可【详解】解:n边形的每个外角都为15,15n360,n24故选C【点睛】本题考查了多边形外角和,熟练掌握多边形外角和为360度是解题的关键3、A【分析】
8、根据多边形的外角和都是即可得解【详解】解:多边形的外角和都是,正八边形的外角和为,故选:A【点睛】此题考查了多边形的内角与外角,熟记多边形的外角和是是解题的关键4、C【分析】取线段AC的中点G,连接EG,根据等边三角形的性质以及角的计算即可得出CD=CG以及FCD=ECG,由旋转的性质可得出EC=FC,由此即可利用全等三角形的判定定理SAS证出FCDECG,进而即可得出DF=GE,再根据点G为AC的中点,即可得出EG的最小值,此题得解【详解】解:取线段AC的中点G,连接EG,如图所示AC=BC=8,BCA=60,ABC为等边三角形,且AD为ABC的对称轴,CD=CG=AB=4,ACD=60,E
9、CF=60,FCD=ECG,在FCD和ECG中,FCDECG(SAS),DF=GE当EGBC时,EG最小,点G为AC的中点,此时EG=DF=CD=BC=2故选:C【点睛】本题考查了等边三角形的性质以及全等三角形的判定与性质,三角形中位线的性质,解题的关键是通过全等三角形的性质找出DF=GE,本题属于中档题,难度不大,解决该题型题目时,根据全等三角形的性质找出相等的边是关键5、C【分析】如图所示,DE,DF,EF分别是三角形ABC的中位线,GH,GI,HI分别是DEF的中位线,则,即可得到DEF的周长,由此即可求出其他四个新三角形的周长,最后求和即可【详解】解:如图所示,DE,DF,EF分别是三
10、角形ABC的中位线,GH,GI,HI分别是DEF的中位线,DEF的周长,同理可得:GHI的周长,第三次作中位线得到的三角形周长为,第四次作中位线得到的三角形周长为第三次作中位线得到的三角形周长为这五个新三角形的周长之和为,故选C【点睛】本题主要考查了三角形中位线定理,解题的关键在于能够熟练掌握三角形中位线定理6、B【分析】根据题意得到,然后根据菱形的判定方法求解即可【详解】解:由题意可得:,四边形是菱形故选:B【点睛】此题考查了菱形的判定,解题的关键是熟练掌握菱形的判定方法菱形的判定定理:四条边都相等四边形是菱形;一组邻边相等的平行四边形是菱形;对角线垂直的平行四边形是菱形7、C【分析】作出平
11、行四边形,根据平行四边形的性质可得,然后在中,利用三角形三边的关系即可确定m的取值范围【详解】解:如图所示:四边形ABCD为平行四边形,在中,即,故选:C【点睛】题目主要考查平行四边形的性质及三角形三边的关系,熟练掌握平行四边形的性质及三角形三边关系是解题关键8、D【分析】利用矩形的性质,求证明,进而在中利用勾股定理求出的长度,弧长就是的长度,利用数轴上的点表示,求出弧与数轴交点表示的实数即可【详解】解:四边形OABC是矩形,在中,由勾股定理可知:, ,弧长为,故在数轴上表示的数为,故选:【点睛】本题主要是考查了矩形的性质、勾股定理解三角形以及数轴上的点的表示,熟练利用矩形性质,得到直角三角形
12、,然后通过勾股定理求边长,是解决该类问题的关键9、D【分析】由矩形的四个角是直角可判断A,由菱形的对角线互相垂直可判断B,由正方形的对角线相等可判断C,由菱形的四条边相等可判断D,从而可得答案.【详解】解:当ABCD是矩形时,ABC90,正确,故A不符合题意;当ABCD是菱形时,ACBD,正确,故B不符合题意;当ABCD是正方形时,ACBD,正确,故C不符合题意;当ABCD是菱形时,ABBC,故D符合题意;故选D【点睛】本题考查的是矩形,菱形,正方形的性质,熟练的记忆矩形,菱形,正方形的性质是解本题的关键.10、C【分析】根据平行四边形的性质,可得AB=CD,BC=AD,然后设 ,可得到 ,即
13、可求解【详解】解:四边形ABCD是平行四边形,AB=CD,BC=AD,AB:BC=3:5,可设 ,的周长为32cm, ,即 ,解得: , 故选:C【点睛】本题主要考查了平行四边形的性质,熟练掌握平行四边形的对边相等是解题的关键二、填空题1、2.5或2【分析】需要分类讨论:BE1E1C,此时点E1是BC的中垂线与AD的交点;BEBC,在直角ABE中,利用勾股定理求得AE的长度,然后求得DE的长度即可【详解】解:当BE1E1C时,点E1是BC的中垂线与AD的交点,;当BCBE5时,在直角ABE中,AB4,则,综上所述,线段DE的长为2.5或2故答案是:2.5或2【点睛】本题考查矩形的性质和等腰三角
14、形的性质,勾股定理,在此题中,没有确定等腰三角形的底边,所以需要分类讨论,以防漏解2、4【分析】根据矩形的性质和旋转性质得出BH=AB=5,C=90,再根据勾股定理求解即可【详解】解:由题意知:,C=90,在RtBCH中,BC=3,故答案为:4【点睛】本题考查矩形的性质、旋转性质、勾股定理,熟练掌握旋转性质和勾股定理是解答的关键3、6【分析】正方形的面积:边长的平方或两条对角线之积的一半,根据公式直接计算即可.【详解】解: 正方形ABCD的一条对角线长为2, 故答案为:【点睛】本题考查的是正方形的性质,掌握“正方形的面积等于两条对角线之积的一半”是解题的关键.4、1 【分析】(1)连接OA、O
15、D,根据正方形的性质和全等三角形的判定证明OAEODF,利用全等三角形的性质得出四边形EOFD的面积等于AOD的面积即可求解;(2)根据全等三角形的性质证得EOF为等腰直角三角形,则EF=OE,当OEAD时OE最小,则EF最小,求解此时在OE即可解答【详解】解:(1)连接OA、OD,四边形ABCD是正方形,OA=OD,AOD=90,EAO=FDO=45,AOE+DOE=90,OEOF,DOF+DOE=90,AOE=DOF,在OAE和ODF中,OAEODF(ASA),SOAE=SODF,S四边形EOFD = SODE+SODF= SODE+SOAE= SAOD= S正方形ABCD,AD=2,S四
16、边形EOFD= 4=1,故答案为:1;(2)OAEODF,OE=OF,EOF为等腰直角三角形,则EF=OE,当OEAD时OE最小,即EF最小,OA=OD,AOD=90,OE=AD=1,EF的最小值,故答案为:【点睛】本题考查正方形的性质、全等三角形的判定与性质、等角的余角相等、等腰直角三角形的判定与性质、垂线段最短,熟练掌握相关知识的联系与运用是解答的关键5、【分析】过点C作CAy轴于点A,过点D作DBx轴于点B,设点 ,可得 ,再将两解析式联立,可得 ,进而得到 是方程的两个不相等实数根,从而得到 或 ,故错误;再由一元二次方程根与系数的关系,可得,从而得到 ,进而得到AOCBOD,得到OC
17、=OD,因而四边形OCED是菱形,故正确;过点O作OHCD于点H,利用等腰三角形的三线合一和,可得COH=DOH=22.5,AOC=BOD=22.5,从而得到AOCBODHOCHOD,进而得到 ,故正确;再由双曲线与坐标轴没有交点可得不可能是正方形,故错误,即可求解【详解】解:如图,过点C作CAy轴于点A,过点D作DBx轴于点B,设点 ,把 ,代入,得: ,直线与双曲线的图象交于两点, ,解得: , 是方程的两个不相等实数根, ,解得: 或 ,故错误; , ,即AC=BD,OA=OB,OAC=OBD=90,AOCBOD,OC=OD,四边形OCED是平行四边形,四边形OCED是菱形,故正确;过点
18、O作OHCD于点H,OC=OD,AOC+BOD=90-45=45,COH=DOH=22.5,AOCBOD,AOC=BOD=22.5,AOC=BOD=COH=DOH,OHC=OHD=OAC=OBD=90,AOCBODHOCHOD, ,故正确;若可以是正方形,则COD=90,即OCOD,反比例函数的图象与坐标轴有交点,这与双曲线与坐标轴没有交点相矛盾,不可能是正方形,故错误;所以正确的有故答案为:【点睛】本题主要考查了一次函数与反比例函数交点问题,一元二次方程根与系数的关系,根的判别式,全等三角形的性质和判定,菱形和正方形的判定,熟练掌握相关知识点,并利用数形结合思想解答是解题的关键三、解答题1、
19、4【分析】分别过点E、C作EH、CG垂直AB,垂足为点H、G,则CG是斜边AB上的高;在菱形ABEF中, 利用平行线的性质不难得到CG=EH;菱形的对角相等,四条边相等,联系含30角的直角三角形的性质求出EH,问题即可解答。【详解】解:如图,分别过作垂足为点 四边形ABEF为菱形,在中, ,根据题意,根据平行线间的距离处处相等, .答:的面积为.【点睛】本题考查了菱形的性质,直角三角形的性质,平行线间的距离及三角形面积的计算,正确利用菱形的四边相等及直角三角形中,30角所对直角边是斜边的一半是解题的关键2、(1)见解析;(2)正方形ABCD的面积为【分析】(1)由等边三角形的性质得EOAC,即
20、BDAC,再根据对角线互相垂直的平行四边形是菱形,即可得出结论;(2)证明菱形ABCD是正方形,即可得出答案【详解】(1)证明:四边形ABCD是平行四边形,AOOC,ACE是等边三角形,EOAC (三线合一),即BDAC,ABCD是菱形;(2)解:ACE是等边三角形,EAC60由(1)知,EOAC,AOOCAEOOEC30,AOE是直角三角形,AED2EAD,EAD15,DAOEAOEAD45,ABCD是菱形,BAD2DAO90,菱形ABCD是正方形,正方形ABCD的面积AB2a2【点睛】本题考查了菱形的判定与性质、正方形的判定与性质、平行四边形的性质、等边三角形的性质等知识,证明四边形ABC
21、D为菱形是解题的关键3、(1)6,;(2)见解析;(3)36【分析】(1)根据旋转的性质得出,由此可得答案;(2)根据题意可得,再根据平行四边形的判定即可得证;(3)利用平行四边形的面积公式求解【详解】解:(1),是等腰直角三角形,将绕点O沿逆时针方向旋转得到, ,故答案为:6,;(2)将绕点O沿逆时针方向旋转得到,四边形是平行四边形(3)四边形OAA1B1的面积=OAA1O=66=36四边形OAA1B1的面积是36【点睛】本题考查了旋转的性质以及平行四边形的判定,熟练掌握旋转的性质是解决本题的关键,注意:旋转前后的两个图形全等4、见解析【分析】由已知条件可得DF=AB及DFAB,从而可得四边形ABFD为平行四边形,则问题解决【详解】是的中位线DEAB,AD=DCDFABEF=DEDF=AB四边形ABFD为平行四边形AD=BFBF=DC【点睛】本题主要考查了平行四边形的判定与性质、三角形中位线的性质定理,掌握它们是解答本题的关键当然本题也可以用三角形全等的知识来解决5、(1)见解析;(2);(3)【分析】(1)根据两个菱形中,点E在BC的延长线上,点G在DC的延长线上这一特殊的位置关系和CEBH可证明相应的边和角分别相等,从而证明结论;(2)由ABBC
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024版学校招生中介服务协议样本版B版
- 2025年度煤炭运输风险管理与控制合同3篇
- 2024年纺织品面料销售合同
- 2024年中国维他命-C软肤水市场调查研究报告
- 2024年电子商务平台搭建与运营协议
- 实习报告网吧网管
- 2024年物流驾驶员专属聘用合同
- 2024年法兰帽项目可行性研究报告
- 2025版快递服务满意度调查项目合同范本一3篇
- 2024年水泥负压筛项目可行性研究报告
- 微型顶管施工方案
- 湘教文艺版小学五年级音乐上册期末测试题
- 老化箱点检表A4版本
- 略说鲁迅全集的五种版本
- 2022年110接警员业务测试题库及答案
- 中联16T吊车参数
- DB44∕T 115-2000 中央空调循环水及循环冷却水水质标准
- 嵌入式软件架构设计
- 《石油天然气地质与勘探》第3章储集层和盖层
- 航道整治课程设计--
- 超星尔雅学习通《科学计算与MATLAB语言》章节测试含答案
评论
0/150
提交评论