版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、运营管理许淑君 博士 副教授研究领域:运营管理、供应链管理讲授课程:运营管理、供应链管理、国际物流管理单 位:上海财经大学 国际工商管理学院 运营管理系 E-mail:xushaun163学习要求了解不同的决策所需要不同的预测方法;理解四个最重要的定性方法和日常使用的判断;掌握运用简单移动平均法和加权移动平均法,并掌握其Excel的运用方法;掌握运用一次指数平滑法和二次指数平滑法,用Excel解决一次指数平滑法的运用问题;掌握运用一元线性回归模型进行需求预测的程序和方法;了解在预测中的两类误差是偏差和方差。课前思考如何看待企业的市场需求?如何获知市场需求?企业从哪里获得数据来认识需求?如何对市
2、场需求进行预测?预测有误差吗?能不预测吗?当年,深圳华为公司就因为对小灵通的市场需求预测偏差,错失其市场。如何判断预测的准确性?2022/7/254第五章 需求管理4第一讲 需求预测概述第二讲 定性预测方法第三讲 时间序列预测方法第四讲 因果关系预测方法第五讲 预测误差与预测监控第六讲 联合计划、预测与补给(CPFR)上海财经大学国际工商管理学院2022/7/255第一讲 需求预测概述5上海财经大学国际工商管理学院一、预测的概念预测:根据过去和现在的已知因素,运用已有的知识、经验和科学方法,对未来事件进行判定和估算,并推测其结果的一种科学方法。预测的基本出发点:假定过去的模式、变量间的关系及其
3、相互作用的机理,使其在将来得以延续科学方法 + 经验直觉一门技术,更是一门艺术经常回顾预测的习惯更重要,而不是完美的预测2022/7/256第一讲 需求预测概述6上海财经大学国际工商管理学院二、预测的类型1、按照预测时间划分:预测类型时间跨度预测方法预测意义长期预测5年或5年以上市场调研、人口统计等产品研发、投资、生产能力扩充计划的依据中期预测一季度2年集体讨论、时间序列法等年度生产计划、生产与库存预算的依据短期预测一季度以下趋势外推、指数平滑法等调整产能、生产作业计划的依据2022/7/257第一讲 需求预测概述7上海财经大学国际工商管理学院二、预测的类型2、按主客观因素划分:定性预测:又称
4、主观预测法。对于难以获得可用数据的情形进行估计与评价。特点:简单明了,不需要数学公式时间序列分析:用过去需求的历史数据可用于预测未来的需求。这种方法是本章的核心,将详细介绍。因果联系分析:假定弄清需求与某些内/外在因素的关系。再基于此进行预测。例如:基于父母的身高影响孩子身高的规律,可以预测孩子成年后的身高。2022/7/258第一讲 需求预测概述8上海财经大学国际工商管理学院二、预测的类型3、按预测对象划分:经济预测:就未来的经济状况及发展趋势进行预测。对于政府,经济预测是预计税收收入、就业水平、货币需求等经济指标的基础;对于企业,经济预测可用于规划自己的行动。技术预测:对技术进步情况的预计
5、与推测。技术进步对于企业和行业发展非常重要:提供新产品和新原料;影响行业竞争态势。需求预测:预测企业某产品在未来一段时间里的需求期望水平,为企业计划、控制决策提供依据。需求预测的基础本章的讨论重点2022/7/259第一讲 需求预测概述9上海财经大学国际工商管理学院三、需求预测的概念在特定社会领域对某种产品需求数量的预测。其作用:掌握企业周围的经济和社会的一般动向,以确定企业发展方向,预测企业产品前景根据新产品开发的需要,摸清开拓新市场的可能性,并作出评价。四、需求变动的构成需求量受到各种因素影响而产生波动,需求变动的构成大体可分为:趋势变动季节变动周期变动突发变动随机波动。第一讲 需求预测概
6、述需求变动的构成需求需求时间时间时间周期变动季节波动时间随机波动趋势变动需求需求复合变动:带季节性的趋势变动2022/7/2511第一讲 需求预测概述11上海财经大学国际工商管理学院五、需求预测方法需求预测的方法分为定性预测方法和定量预测方法两大类:定性预测方法:依靠熟悉业务知识、具有丰富经验和综合分析能力的人员或专家,根据已经掌握的历史资料和直观材料,运用人的知识、经验和分析判断能力,对事物的未来发展趋势做出性质和程度上的判断;然后再通过一定的形式综合各方面的判断,得出统一的预测结论。定量预测方法: 根据已掌握的比较完备的历史统计数据,运用一定的数学方法进行科学的加工整理,借以揭示有关变量之
7、间的规律性联系,用于预测和推测未来发展变化情况。2022/7/2512第一讲 需求预测概述12上海财经大学国际工商管理学院五、需求预测方法2022/7/2513第一讲 需求预测概述13上海财经大学国际工商管理学院六、需求预测的衡量标准需求预测通常从稳定性和响应性两个方面衡量:稳定性是指抗拒随机干扰,表现稳定需求的能力。稳定性好的预测方法有利于消除或减少随机因素的影响,适用于受随机因素影响较大的预测问题。响应性是指迅速反应需求变化的能力。响应性好的预测方法能及时跟上实际需求的变化,适用于受随机因素影响小的预测问题。2022/7/2514第一讲 需求预测概述14上海财经大学国际工商管理学院七、需求
8、预测的步骤1、明确预测目的和对象:根据决策任务提出预测的目标、时间范围,对预测的技术要求书面形式明确规定。2、选择预测方法:通过分析产品需求的影响因素,选择预测方法,据以制定预测工作的组织日程。3、收集资料:根据预测计划,使用科学方法收集各个层次、不同形式的数据资料。4、整理、分析数据:在对收集来的数据按种类、原因进行整理的基础上,明确所有的假设前提,运用预测模型进行分析。5、进行预测,并实际应用:根据预测方法的要求,使用数据分析结果,对相关领域进行预测,得出结论。6、监控预测结果:对预测全程进行监控,若预测结果偏离预期,要重新检查预测方法、前提条件以及数据合理性。2022/7/2515第五章
9、 需求管理15第一讲 需求预测概述第二讲 定性预测方法第三讲 时间序列预测方法第四讲 因果关系预测方法第五讲 预测误差与预测监控第六讲 联合计划、预测与补给(CPFR)上海财经大学国际工商管理学院2022/7/2516第二讲 定性预测方法1、德尔菲法(Delphi Method) :又称专家调查法,首先由美国兰德公司的奥拉夫海尔默等人于1984年提出。它是一种让一组专家在匿名的情况下达成对问题的共识的过程。其本质是利用专家的知识、经验、智慧等带有很大模糊性的无法量化的信息,通过通信方式交换信息,逐步取得一致的意见,达到预测的目的。预测过程挑选专家。具体人数视预测问题的规模而定,一般3050人为
10、宜。在预测过程中要避免专家间交换意见。第一轮:函询调查。向专家提出所要决策的问题,并寄去预测对象的背景资料。在首轮调查中,完全不设框架,专家可以以任何形式回答问题。组织者对答案进行整理和汇总,剔除次要、分散的事件,并用准确的术语统一描述,将结果反馈给各位专家。第二轮:函询调查。要求每位专家对所预测对象的各种事件的发生时间、空间、规模等提出具体的预测,并说明理由,同时请他们根据第一轮反馈结果修正或坚持自己的判断,并书面答复调查人员。组织者再次对专家意见进行统计处理,并反馈结果。第三轮:函询调查。要求专家基于反馈回来的意见修正表,对组织者提供的综合意见及其论据加以评价,对预测对象进行预测修正或重新
11、预测。得出结论:经过三到四轮函询调查后,如果专家对决策问题的意见趋于一致,这个意见即可作为预测结果和决策基础。16上海财经大学国际工商管理学院2022/7/2517第二讲 定性预测方法2、销售人员意见汇总法(Field Sales Force) :通过让企业销售人员定期对未来的需求做出估计,进行汇编而得出预测结果。通常,企业的总销售部门还根据自己的经验、历史资料、对经济形势的估计等作出预测,并与各销售人员的综合预测值进行比较,以得到更加准确的预测结果。简单易行,取样较多使预测结构较具稳定性,但是,不可避免地带有销售人员的主观偏见,不易区分消费者“想要”和真正“需要”之间的差别;同时,预测结果也
12、极易受当前销售情况的左右,如经过几个畅销期后易做出过于乐观的预测;此外,当预测结果可能作为销售人员的绩效评价指标时,预测结果容易被故意低估。17上海财经大学国际工商管理学院2022/7/2518第二讲 定性预测方法3、部门主管集体讨论法(Jury of Executive) :由高级决策人员召集销售、生产、采购、财务、研发等各部门主管开会讨论,与会人员充分发表意见,对某一问题进行预测,然后由召集人按照一定的方法,如简单平均或加权平均法,对全体与会人员的预测值进行处理,得出预测结果。适用于制定长期规划以及开发新产品服务可快速获得预测结果,不需要准备历史统计资料但是,与会人员容易相互影响,个别权威
13、观点可能左右其他人发表意见;由于预测结果是集体讨论的结果,这易导致没有人对预测结果的正确性负责,从而因责任不清造成草率发表预测意见。有效使用该方法的关键是确保预测反映的不是一系列各自独立的结果,而应该是由管理者一致同意的唯一一个预测结果。18上海财经大学国际工商管理学院2022/7/2519第二讲 定性预测方法4、顾客期望法(Users Expectation):通过收集数据进行调查,提出假说并进行检验,进而确定客户对产品或服务的兴趣的一种系统性方法。优点:预测结果来源于顾客期望,能较好的反映市场需求情况,有利于改进产品,有针对性地开展促销活动特别适用于对新产品或缺乏销售记录的情况缺点:结果中
14、包含大量的限制条件和障碍;较难得到顾客的通力合作,问卷回收率低;调查结果可能并未反映市场的看法,因为顾客所说不一定符合顾客实际所做 19上海财经大学国际工商管理学院2022/7/2520第五章 需求管理20第一讲 需求预测概述第二讲 定性预测方法第三讲 时间序列预测方法第四讲 因果关系预测方法第五讲 预测误差与预测监控第六讲 联合计划、预测与补给(CPFR)上海财经大学国际工商管理学院2022/7/2521第三讲 时间序列预测方法一、时间序列平滑模型1、简单移动平均法(Simple Moving Average, SMA):假定预测对象的未来状况和邻近几期的数据有关,故只选择近期几个数据加以算
15、数平均,作为下期的预测值。如果根据时间序列数据绘制成的散点图所反映的需求既不快速增长也不快速下降,且不存在季节性和周期性变动,则移动平均法可以有效地消除预测中的随机波动。其预测公式为: 式中:N移动步长,即选定的数据个数; xi第i期实际发生值选择合理的步长至关重要。移动步长越大,对随机扰动的平滑性越好,预测的稳定性也越好,响应性则越差。反之,较小的移动步长会产生相对大的波动性,但更能紧跟踪变化趋势。因此,在计算移动平均数之前,应先分析时间序列数值的变化情况,若变动缓慢,N可取大一些;否则,N取小一些。21上海财经大学国际工商管理学院 2022/7/2522第三讲 时间序列预测方法一、时间序列
16、平滑模型2、加权移动平均法(Weighted Moving Average, WMA):在计算平均值时,给近期数据以更大的权重。这种方法适用于当存在可察觉的趋势时,用权重来强调近期数据。其预测公式为: 式中:WMAt+1t期末加权移动平均值,即t+1期的预测值; i实际需求的权重; xi第i期实际发生值该方法的关键在于确定各期历史数据的权重值。移动步长对于预测值的影响与简单移动平均法类似。近期数据权重越大,越能灵敏地反映近期趋势,即预测的响应性好,稳定性差。移动步长的选择须基于稳定性与响应性的权衡;移动平均值总是停留在过去的水平上,而无法预计将来更高或更低水平的波动;移动平均法需要大量历史数据
17、。22上海财经大学国际工商管理学院 2022/7/2523第三讲 时间序列预测方法23上海财经大学国际工商管理学院【例5-1】 某公司产品的逐月销售量记录如表5-2所示。取n=3,试用移动平均法进行预测。已知第12月的实际销量为59,试对这两种方法进行比较。表5-2 某公司产品的逐月销售量记录月份1234567891011实际销量50515354555756555658571、简单移动平均法根据式(5-1),用简单移动平均法的求解结果如表5-3所示。其中,4月份销售量预测计算是通过式(5-1)计算出来,SMA4=(50+51+51)3=51.33,以此类推,5月份销售量计算方法为SMA5=(5
18、1+53+54)3=52.67,6月份销售量计算方法为SMA6=(53+54+55)=54。如法炮制,可以预测出7至12月份的销售量。月份123456789101112实际销量50515351.3352.6754.0055.33565655.6756.3357.002022/7/2524第三讲 时间序列预测方法24上海财经大学国际工商管理学院2、加权移动平均法根据式(5-2),用加权移动平均法的求解结果如表5-4所示。其中,1=0.5,2=1.0,3=1.5,n取3。4月份销售预测值计算方法WMA4=(0.5A1+A2+1.5A3)3=51.83,以此类推,WMA5=(0.5A2+A3+1.5
19、A4)3=53.17,WMA5=(0.5A3+A4+1.5A5)3=54.33。从而可以预测出7至12月份的销售量。根据上述结果,对简单移动平均(SMA)和加权移动平均(WMA)的预测结果进行比较,可见在选取合适权重的条件下,加权移动平均的预测结果比简单移动平均的滞后性要小,即响应性要好。月份123456789101112实际销量50515351.3353.1754.3355.8356.1755.6755.6756.8357.172022/7/2525第三讲 时间序列预测方法25上海财经大学国际工商管理学院3、一次指数平滑法(Single Expotential Smoothig, SES)
20、:把经预测误差修正后的上一期预测值作为下一期的预测,是加权移动平均法的一种变形。其预测公式为:式中:SESt+1t+1期一次指数平滑预测值; Xtt期的实际预测值; 赋予实际数据的权重,称为平滑系数(0 1)。=0时,SESt+1= SES1=X1,即近期数据权重为零,只考虑第一期实测值。=1时,SESt+1=Xt=Xt,即历史数据权重为零,只考虑最近期数据。指数平滑系数的大小决定了预测值与实际值之间差异的响应速度。如果实际需求稳定,可选用较小的来减弱短期变化或随机变化的影响;如果实际需求变动幅度大,应选择较大的来跟踪这一变化。2022/7/2526第三讲 时间序列预测方法26上海财经大学国际
21、工商管理学院【例5-2】 某公司产品的逐月销售记录如表5-5所示。假设第一月的预测值为11,分别取 =0.4和 =0.7,试用一次指数平滑法进行预测,并进行比较。月份123456789101112实际销量101213161923263028181614月份实际销量预测值(=0.4)预测值( =0.7)110.0011.0011.00212.0010.6010.30313.0011.1611.49416.0011.9012.55519.0013.5414.97623.0015.7217.79726.0018.6321.44830.0021.5824.63928.0024.9528.391018.
22、0026.1728.121116.0022.9021.041214.0020.1417.512022/7/2527第三讲 时间序列预测方法27上海财经大学国际工商管理学院4、二次指数平滑法(Double Expotential Smoothing, DES):也称为趋势调整指数平滑法,因为该方法先用一次指数平滑法进行预测,得到基数预测值,然后用趋势滞后值进行调整。面对有上升或下降趋势的需求序列时,可采用该方法避免一次指数平滑法的预测滞后现象。二次指数平滑法实质上是将历史数据进行加权平均作为未来时刻的预测结果,具有计算简单、样本要求量较少、适应性较强、结果较稳定等特点。其计算公式为:式中:DFt
23、第t期的二次指数平滑预测值;SFt第t期的一次指数平滑预测值(SF0事先给定);Tt第t期的趋势校正值(T0事先给定); 2022/7/2528第三讲 时间序列预测方法28上海财经大学国际工商管理学院【例5-3】 某公司产品的逐月销售量记录如表5-7所示.假设一月份的预测值为11,T0=0,分别取 =0.2和 =0.4,试用二次指数平滑法对9月份的销售量进行预测。月份12345678实际销量1012131619232630月份实际需求一次预测SFt趋势Tt二次预测DFt112110.021711.200.0811.2832012.360.5112.8741913.890.9214.815241
24、4.910.9615.8762616.731.3018.0373118.581.5220.1083221.071.9122.9893623.252.0225.272022/7/2529第三讲 时间序列预测方法二、时间序列分解模型:实际需求值是趋势、季节、周期或随机等多种因素共同作用的结果。时间序列分解模型从实际值中分解出各种成分,并在对各种成分单独进行预测的基础上,综合各种成分的预测值,以得到最终的预测结果。通常由两种方法进行综合:加法模型,即将各种成分相加来预测: F=T+S+C+I 乘法模型,即将各种成分以比例的形式相乘得到综合结果: F=TSCI 式中,F:综合预测值;T:趋势成分;S:
25、集结成分;C:周期成分;I:随机成分这里,主要讨论有线性趋势、相等的季节波动时间序列的线性季节模型。线性季节模型是线性变化趋势与季节性变化趋势共同作用的结果。若采用加法模型,则预测值=趋势+季节变动量。其假设为:无论趋势效应或平均值如何变化,季节变动量恒为常数。若采用乘法模型,则预测值=趋势季节因子。相乘式季节变动是季节变动的通常形式。其中,季节因子是指时间序列中随各季节变化所做的调整系数。29上海财经大学国际工商管理学院 2022/7/2530第三讲 时间序列预测方法30上海财经大学国际工商管理学院【例5-4】 某披萨店在过去三年快餐销售记录如表5-9所示,是预测未来一年该披萨店的夏秋冬春各
26、季的销售量。季度季度序号t销售量At/份季度季度序号t销售量At/份夏111800冬79213秋210104春811286冬38925夏913350春410600秋1011270夏512285冬1110266秋611009春12121382022/7/2531第三讲 时间序列预测方法31上海财经大学国际工商管理学院解:第一步:求趋势直线方程y=a+bty为趋势预测值,t为季节序号,a、b为常数。可用作图法或最小二乘法求出a、b。这里采用作图法,做散点图,引出一条拟合直线。该直线方程为:T(t)=100326+106.81t2022/7/2532第三讲 时间序列预测方法32上海财经大学国际工商管
27、理学院第二步:计算季节因子SI季节因子为各周期内相应实际值与趋势值的比值的平均值。先求出每季度的实际值Ai与趋势值Ti的比值。例如,对于第一季度:A1/T1=11800/(10000+1671)=11800/10167=1.16 其余的比值经计算如表5-10:SI(夏)=(1.16+1.13+1.16)/3=1.15;SI(秋)=1.00;SI(冬)=0.85;SI(春)=1.00第三步:计算预测值。预测值=趋势预测值季节因子未来一年的夏秋冬春各季对应的t值分别为13,14,15,16,预测销售量分别为:夏季:(10000+16713)1.15=13997(份)秋季:(10000+16714)
28、1.00=12338(份)冬季:(10000+16715)0.85=10629(份)春季:(10000+16716)1.00=12672(份)t123456789101112Ai/Ti1.161.010.850.991.131.000.821.001.160.950.871.012022/7/2533第五章 需求管理33第一讲 需求预测概述第二讲 定性预测方法第三讲 时间序列预测方法第四讲 因果关系预测方法第五讲 预测误差与预测监控第六讲 联合计划、预测与补给(CPFR)上海财经大学国际工商管理学院2022/7/2534第四讲 因果关系预测方法因果模型通过对与需求有关的先导指数的计算,对需求进
29、行预测。按照反映需求及其影响因素之间因果关系的不同,因果模型又分为:回归模型:两个或两个以上相关变量之间的函数关系,然后通过一个已知变量去预测另一个或多个变量,常用于长期预测, 它对于预测产品簇的需求情况非常有用。 在进行线性回归分析前,首先应作出数据散点图,观察数据是否呈线性或至少部分呈线性。线性回归是指变量呈直线关系的一种特殊回归形式。一元线性回归模型可用下式表达:Y=a+bX,其中,经济计量模型投入产出模型等34上海财经大学国际工商管理学院 2022/7/2535第四讲 因果关系预测方法35上海财经大学国际工商管理学院【例 5-5】 对例5-3应用一元线性回归法进行预测,数据如表5-11
30、所示。季度季度序号t销售量At/份4个季度销售总量4个季度移动平均季度中点夏111800秋210104冬38925春4106004172910432.32.5夏5122854221410553.53.5秋6110094281910704.84.5冬792134310710776.85.5春8112864379310948.36.5夏9133504485811214.57.5秋10112704511911279.88.5冬11102664617211543.09.5春12121384704211756.010.52022/7/2536第四讲 因果关系预测方法36上海财经大学国际工商管理学院 解:
31、计算a和b,然后求Y,结果如表5-12所示。b=(9654709.5-58.599209.0)(9440.25-58.52)=164.183a=(99209-16418358.5)9=9956.03Y=9956.03+164.183XXYX2XY2.510432.36.2526080.753.510553.512.2536937.254.510704.820.2548171.605.510776.830.2559272.406.510948.342.2571163.957.511214.556.2584108.758.511279.872.2595878.309.511543.090.2510
32、9658.5010.511756.0110.25123438.002022/7/2537第五章 需求管理37第一讲 需求预测概述第二讲 定性预测方法第三讲 时间序列预测方法第四讲 因果关系预测方法第五讲 预测误差与预测监控第六讲 联合计划、预测与补给(CPFR)上海财经大学国际工商管理学院2022/7/2538第五讲 预测误差与预测监控1、预测误差:是指预测值与实际值之间的差异。当预测值大于实际值时,误差为正;反之,误差为负。预测模型最好是无偏的模型,即应用该模型时,正、负误差出现的概率大致相等。误差的主要来源在于:过去的趋势在未来未必得到延续模型中未包含正确的变量变量间的关系定义错误季节性需
33、求偏离正常轨迹存在随机误差等。平均误差是评价预测精度、计算预测误差的重要指标。作用:常被用来检验预测与历史数据的吻合情况也是判断预测模型能否继续使用的重要标准之一38上海财经大学国际工商管理学院2022/7/2539第五讲 预测误差与预测监控二、误差测量:1、平均绝对偏差(Mean Absolute Deviation, MAD)就是整个预测期内每一次预测值与实际值的绝对偏差 (不分正负 ,只考虑偏差量)的平均值。式中,At表示时段t的实际值;Ft表示时段 t的预测值;n是整个预测期内的时段个数。MAD的作用与标准偏差相类似,但它比标准偏差容易求得。如果预测误差是正态分布,MAD约等于0.8倍
34、的标准偏差。MAD能较好地反映预测的精度,但它不容易衡量无偏性。39上海财经大学国际工商管理学院 2022/7/2540第五讲 预测误差与预测监控40上海财经大学国际工商管理学院2、平均平方误差(Mean Square Error,MSE) :平均平方误差就是对误差的平方和取平均值。 MSE与MAD相类似,虽可以较好地反映预测精度,但无法衡量无偏性。 3、平均预测误差 (Mean Forecast Error,MFE) :指预测误差的和的平均值 MFE能很好地衡量预测模型的无偏性,但不反映预测值偏离实际值的程度。4、平均绝对百分误差 (Mean Absolute Percentage Erro
35、r, MAPE): 2022/7/2541第五讲 预测误差与预测监控三、误差监控:误差监控就是将最近的实际值与预测值进行比较 ,看偏差是否在可以接受的范围以内,采用的手段一是计算跟踪信号,二是利用控制图进行动态监控。预测的一个重要理论基础是:一定形式的需求模式在过去、现在和将来起着基本相同的作用。然而,过去起作用的预测模型,现在不一定有效。这需要预测监控。所谓跟踪信号(Tracking Signal, TS),是指预测误差滚动和与平均绝对偏差的比值,即跟踪信号既反映了累积误差及其正负方向,也同时反映了其与实际发生值之间的预测程度。理想的预测模型的跟踪信号应为零,说明其为无偏模型,既不超前也不滞
36、后于实际需求。41上海财经大学国际工商管理学院2022/7/2542第五讲 预测误差与预测监控每当实际需求发生时,就应该计算TS。如果预测模型仍然有效,TS应该比较接近于零。反过来,只有当TS在一定范围内(如图5-13所示)时,才认为预测模型可以继续使用。否则 ,就应该重新选择预测模型。图5-16所示的就是另一个监控工具:控制图。TS的预测误差上下限是为积累误差设置的,控制图的上下限是为单个预测误差设置的。运用控制图的假设条件是:预测误差是均值为零的随机分布;误差的分布是正态的。取MSE的平方根 ,查阅正态分布表,当控制上下限为00.2s时,95%的误差将落入其中;当控制上下限为00.3s时,
37、99.7%的误差将落入其中。42上海财经大学国际工商管理学院2022/7/2543第五章 需求管理43第一讲 需求预测概述第二讲 定性预测方法第三讲 时间序列预测方法第四讲 因果关系预测方法第五讲 预测误差与预测监控第六讲 联合计划、预测与补给(CPFR)上海财经大学国际工商管理学院2022/7/2544第六讲 联合计划、预测与补给(CPFR)一、CPFR的概念CPFR(Collaborative Planning,Forecasting and Replenishment) :即协同规划、预测与补货,是一种协同式的供应链库存管理技术。在降低销售商的存货量的同时,也增加供应商的销售额。它在CF
38、AR(Collaborative Forecast And Replenishment)共同预测和补货的基础上,进一步推动共同计划的制定不仅在合作企业间实行共同预测和补货,同时将原来属于各企业内部事务的计划工作(如生产计划、库存计划、配送计划、销售规划等)也由供应链各企业共同参与,利用互联网实现跨越供应链的成员合作。目的:改善合作关系提高预测的准确性和供应链效率减少库存提高消费者满意程度。44上海财经大学国际工商管理学院2022/7/2545第六讲 联合计划、预测与补给(CPFR)二、CPFR的四个特点:协同。供应链上下游企业只有确立起共同的目标,才能使双方的绩效都得到提升,取得综合性的效益。规划。需要双方进行合作规划(种类、品牌、分类、关键品种等)以及合作财务(销量、订单满足率、定价、库存、安全库存、毛利等)。此外,还要求双方协同制定促销计划、库存政策变化计划、产品导入和中止计划以及仓储分类计划。 预测。CPFR强调买卖双方必须做出最终的协同预测,基于像季节因素和趋势管理等信息的共同预测能大大减少整个价值链体系的低效率、死库存,促进更好的产品销售、节约使用整个供应链的资源。与此同时,最终实现协同促销计划是提高预
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 企业销售个人的工作总结
- 乡村医生先进事迹500字(10篇)
- DB12T 598.17-2015 天津市建设项目用地控制指标 第17部分:墓葬项目
- 中秋节的慰问信(5篇)
- 团支部书记竞选演讲稿四篇
- 新学期学习计划范本锦集8篇
- 业务员的实习报告范文4篇
- 高等数学教程 上册 第4版 习题及答案 P177 第7章 多元微积分
- 天然气公司股东协议书-企业管理
- 3D立体风立体商务汇报
- 蓝色简约风中国空军成立75周年纪念日
- 2024年全国企业员工全面质量管理知识竞赛题库(含答案)(共132题)
- 知识创业思维与方法智慧树知到答案2024年湖南师范大学
- 无人机全行业保险
- 2023年广东省建筑设计研究院校园招聘笔试参考题库附带答案详解
- 员工人事档案目录
- 迅达SWE30-100K自动扶梯电路分析_图文
- 二年级上册数学计算能力测试题73375
- 气体流量和流速及与压力的关系
- 混凝搅拌实验操作方法
- 拌混凝土拌合站管理办法
评论
0/150
提交评论