版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、乘法公式的复习一、平方差公式(a+b)(a-b)=a2-b2归纳小结公式的变式,准确灵活运用公式:位置变化,xyyxx2y2符号变化,xyxyx2y2x2y2指数变化,x2y2x2y2x4y4系数变化,2ab2ab4a2b2换式变化,xyzmxyzmxy2zm2x2y2zmzmx2y2z22zmzmmx2y2z222zmm增项变化,xyzxyzxy2z2xyxyz2x2xyxyy2z2x22xyy2z222连用公式变化,xyxyxy2222xyxy44xy逆用公式变化,xyz2xyz2xyzxyzxyzxyz2x2y2z4xy4xz完全平方公式活用:把公式本身适当变形后再用于解题。这里以完全平
2、方公式为例,经过变形或重新组合,可得如下几个比较有用的派生公式:1.a22aba2b2b2.a22aba2b2b3.a2a22a2b2bb4.a2a24abbb灵活运用这些公式,往往可以处理一些特殊的计算问题,培养综合运用知识的能力。例1已知ab2,ab1,求a2b2的值。例2已知ab8,ab2,求(ab)2的值。解:(ab)2a22abb2(ab)2a22abb2(ab)2(ab)24ab(ab)24ab=(ab)2ab8,ab2(ab)2824256例3已知ab4,ab5,求a2b2的值。解:2222aababb425262三、学习乘法公式应注意的问题(一)、注意掌握公式的特征,认清公式中
3、的“两数”1计算(-2x2-5)(2x2-5)分析:本题两个因式中“-5”相同,“2x2”符号相反,因而“-5”是公式(a+b)(a-b)=a2-b2中的a,而“2x2”则是公式中的b2计算(-a2+4b)2分析:运用公式(a+b)2=a2+2ab+b2时,“-a2”就是公式中的a,“4b”就是公式中的b;若将题目变形为(4b-a2)2时,则“4b”是公式中的a,而“a2”就是公式中的b(解略)(二)、注意为使用公式创造条件3计算(2x+y-z+5)(2x-y+z+5)分析:粗看不能运用公式计算,但注意观察,两个因式中的“2x”、“5”两项同号,“y”、“z”两项异号,因而,可运用添括号的技巧
4、使原式变形为符合平方差公式的形式5计算(2+1)(22+1)(24+1)(28+1)分析:此题乍看无公式可用,“硬乘”太繁,但若添上一项(2-1),则可运用公式,使问题化繁为简(三)、注意公式的推广计算多项式的平方,由(a+b)2=a2+2ab+b2,可推广得到:(a+b+c)2=a2+b2+c2+2ab+2ac+2bc可叙述为:多项式的平方,等于各项的平方和,加上每两项乘积2倍6计算(2x+y-3)2解:原式=(2x)2+y2+(-3)2+22xy+22x(-3)+2y(-3)=4x2+y2+9+4xy-12x-6y(四)、注意公式的变换,灵活运用变形公式7已知:x+2y=7,xy=6,求(
5、x-2y)2的值10计算(2a+3b)2-2(2a+3b)(5b-4a)+(4a-5b)2分析:此题可以利用乘法公式和多项式的乘法展开后计算,但逆用完全平方公式,则运算更为简便四、怎样熟练运用公式:熟悉常见的几种变化有些题目往往与公式的标准形式不相一致或不能直接用公式计算,此时要根据公式特征,合理调整变化,使其满足公式特点常见的几种变化是:1、位置变化如(3x+5y)(5y3x)交换3x和5y的位置后即可用平方差公式计算了2、符号变化如(2m7n)(2m7n)变为(2m+7n)(2m7n)后就可用平方差公式求解了(思考:不变或不这样变,可以吗?)3、数字变化如98102,992,912等分别变
6、为(1002)(100+2),(1001)2,(90+1)2后就能够用乘法公式加以解答了4、系数变化如(4m+n)(2mn)变为2(2m+n)(2mn)2444后即可用平方差公式进行计算了(四)、注意公式的灵活运用有些题目往往可用不同的公式来解,此时要选择最恰当的公式以使计算更简便如计算(a2+1)2(a21)2,若分别展开后再相乘,则比较繁琐,若逆用积的乘方法则后再进一步计算,则非常简便即原式=(a2+1)(a21)2=(a41)2=a82a4+1对数学公式只会顺向(从左到右)运用是远远不够的,还要注意逆向(从右到左)运用如计算(11)(11)(11)(1223242192)(11102),
7、若分别算出各因式的值后再行相乘,不仅计算繁难,而且容易出错若注意到各因式均为平方差的形式而逆用平方差公式,则可巧解本题即原式=(11)(1+1)(11)(1+1)(11)(1+1)22331010=1324911=111=112233101021020有时有些问题不能直接用乘法公式解决,而要用到乘法公式的变式,乘法公式的变式主要有:a2+b2=(a+b)22ab,a2+b2=(ab)2+2ab等用这些变式解有关问题常能收到事半功倍之效2222如已知m+n=7,mn=18,求m+n,mmn+n的值面对这样的问题就可用上述变式来解,22222(18)=49+36=85,即m+n=(m+n)2mn=
8、722223(18)=103mmn+n=(m+n)3mn=7下列各题,难不倒你吧?!1、若a+1=5,求(1)a2+12,(2)(a1)2的值aaa2、求(2+1)(22+1)(24+1)(28+1)(216+1)(232+1)(264+1)+1的末位数字(答案:1.(1)23;(2)212.6)五、乘法公式应用的五个层次乘法公式:(ab)(ab)=a2b2,(ab)=a22abb2,(ab)(a2abb2)=a3b3第一层次正用即根据所求式的特征,模仿公式进行直接、简单的套用例1计算(2xy)(2xy)第二层次逆用,即将这些公式反过来进行逆向使用例2计算第三层次活用:根据待求式的结构特征,探
9、寻规律,连续反复使用乘法公式;有时根据需要创造条件,灵活应用公式3化简:(21)(221)(241)(281)1分析直接计算繁琐易错,注意到这四个因式很有规律,如果再增添一个因式“21”便可连续应用平方差公式,从而问题迎刃而解解原式=(21)(21)(221)(241)(281)1=(221)(221)(241)(281)1=216第四层次变用:解某些问题时,若能熟练地掌握乘法公式的一些恒等变形式,如a2b2=(ab)22ab,a3b3=(ab)33ab(ab)等,则求解十分简单、明快5已知ab=9,ab=14,求2a22b2的值解:ab=9,ab=14,2a22b2=2(ab)22ab=2(
10、92214)=106,第五层次综合后用:将(ab)2=a22abb2和(ab)2=a22abb2综合,可得(ab)2(ab)2=2(a2b2);(ab)2(ab)2=4ab;等,合理地利用这些公式处理某些问题显得新颖、简捷6计算:(2xyz5)(2xyz5)解:原式=1(2x+y-z+5)+(2x-y+z+5)2-1(2x+y-z+5)-(2x-y+z+5)244=(2x5)2(yz)2=4x220 x25y22yzz2乘法公式的使用技巧:提出负号:对于含负号较多的因式,通常先提出负号,以避免负号多带来的麻烦。例1、运用乘法公式计算:1)(-1+3x)(-1-3x);(2)(-2m-1)2改变
11、顺序:运用交换律、结合律,调整因式或因式中各项的排列顺序,可以使公式的特征更加明显.例2、运用乘法公式计算:111a2(1)(3a-4b)(-4b-3);(2)(x-1/2)(x+1/4)(x+1/2)逆用公式将幂的公式或者乘法公式加以逆用,比如逆用平方差公式,得a2-b2=(a+b)(a-b),逆用积的乘方公式,得anbn=(ab)n,等等,在解题时常会收到事半功倍的效果。例3、计算:(1)(x/2+5)2-(x/2-5)2;(2)(a-1/2)2(a2+1/4)2(a+1/2)2合理分组:对于只有符号不同的两个三项式相乘,一般先将完全相同的项调到各因式的前面,视为一组;符号相反的项放在后面
12、,视为另一组;再依次用平方差公式与完全平方公式进行计算。计算:(1)(x+y+1)(1-x-y);(2)(2x+y-z+5)(2x-y+z+5).先提公因式,再用公式例2.yy计算:8x4x24简析:通过观察、比较,不难发现,两个多项式中的x的系数成倍数,y的系数也成倍数,而且存在相同的倍数关系,若将第一个多项式中各项提公因数2出来,变为24xy,则可利用乘法公式。4.先分项,再用公式3.计算:2x3y22x3y6简析:两个多项中似乎没多大联系,但先从相同未知数的系数着手观察,不难发现,x的系数相同,y的系数互为相反数,符合乘法公式。进而分析如何将常数进行变化。若将2分解成4与2的和,将6分解
13、成4与2的和,再分组,则可应用公式展开。.先整体展开,再用公式4.计算:(a2b)(a2b1)简析:乍看两个多项式无联系,但把第二个整式分成两部分,即(a2b)1,再将第一个整式与之相乘,利用平方差公式即可展开。六.先用公式,再展开例6.计算:111111112232421021212简析:第一个整式1可表示为12,由简单的变化,22可看出整式符合平方差公式,其它因式类似变化,进一步变换成分数的积,化简即可。.先整体展开,再用公式4.计算:(a2b)(a2b1)简析:乍看两个多项式无联系,但把第二个整式分成两部分,即(a2b)1,再将第一个整式与之相乘,利用平方差公式即可展开。六.先用公式,再展开例6.计算:111111112232421021212简析:第一个整式1可表示为12,由简单的变化,22可看出整式符合平方差公式,其它因式类似变化,进一步变换成分数的积,化简即可。.先整体展开,再用公式4.计算:(a2b)(a2b1)简析:乍看两个多项式无联系,但把第二个整式分成两部分,即(a2b)1,再将第一个整式与之相乘,利用平方差公式即可展开。六.先用公式,再展开例6.计算:111111112232421021212简析:第一个整式1可表示为12,由简单的变化,22可看出整式符
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 江苏护理职业学院《数据库系统原理(双语)》2023-2024学年第一学期期末试卷
- 黄山职业技术学院《药事管理学》2023-2024学年第一学期期末试卷
- 湖南劳动人事职业学院《建筑构造Ⅰ》2023-2024学年第一学期期末试卷
- 湖北生物科技职业学院《金属熔炼与铸造》2023-2024学年第一学期期末试卷
- 【物理】《大气压强》(教学设计)-2024-2025学年人教版(2024)初中物理八年级下册
- 高考物理模拟测试题(附带答案)
- 重庆师范大学《软件测试课设》2023-2024学年第一学期期末试卷
- 重庆电信职业学院《扩声技术1》2023-2024学年第一学期期末试卷
- 浙江中医药大学《嵌入式系统开发及应用》2023-2024学年第一学期期末试卷
- 浙江机电职业技术学院《空间信息系统》2023-2024学年第一学期期末试卷
- 2023年贵州黔东南州州直机关遴选公务员笔试真题
- 心脑血管疾病预防课件
- 中药饮片验收培训
- DB35T 1036-2023 10kV及以下电力用户业扩工程技术规范
- 中国移动自智网络白皮书(2024) 强化自智网络价值引领加速迈进L4级新阶段
- 亚马逊合伙运营协议书模板
- 2024年6月青少年机器人技术等级考试理论综合-三级试题(真题及答案)
- 《义务教育数学课程标准(2022年版)》测试题+答案
- Unit 4 同步练习人教版2024七年级英语上册
- 人教版数学三年级下册《简单的小数加、减法》说课稿(附反思、板书)课件
- 广东省深圳市2023年中考英语试题(含答案与解析)
评论
0/150
提交评论