浙江省杭州2022年高考数学三模试卷含解析_第1页
浙江省杭州2022年高考数学三模试卷含解析_第2页
浙江省杭州2022年高考数学三模试卷含解析_第3页
浙江省杭州2022年高考数学三模试卷含解析_第4页
浙江省杭州2022年高考数学三模试卷含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知函数的部分图象如图所示,则( )ABCD2已知直线与直线则“”是“”的( )A充分不必要条

2、件B必要不充分条件C充分必要条件D既不充分也不必要条件3设双曲线(a0,b0)的一个焦点为F(c,0)(c0),且离心率等于,若该双曲线的一条渐近线被圆x2+y22cx0截得的弦长为2,则该双曲线的标准方程为( )ABCD4如图所示的程序框图,若输入,则输出的结果是( )ABCD5新闻出版业不断推进供给侧结构性改革,深入推动优化升级和融合发展,持续提高优质出口产品供给,实现了行业的良性发展.下面是2012年至2016年我国新闻出版业和数字出版业营收增长情况,则下列说法错误的是( )A2012年至2016年我国新闻出版业和数字出版业营收均逐年增加B2016年我国数字出版业营收超过2012年我国数

3、字出版业营收的2倍C2016年我国新闻出版业营收超过2012年我国新闻出版业营收的1.5倍D2016年我国数字出版营收占新闻出版营收的比例未超过三分之一6将一块边长为的正方形薄铁皮按如图(1)所示的阴影部分裁下,然后用余下的四个全等的等腰三角形加工成一个正四棱锥形容器,将该容器按如图(2)放置,若其正视图为等腰直角三角形,且该容器的容积为,则的值为( )A6B8C10D127在原点附近的部分图象大概是( )ABCD8已知函数,且关于的方程有且只有一个实数根,则实数的取值范围( )ABCD9已知Sn为等比数列an的前n项和,a516,a3a432,则S8( )A21B24C85D8510函数与的

4、图象上存在关于直线对称的点,则的取值范围是( )ABCD11复数在复平面内对应的点为则( )ABCD12设函数若关于的方程有四个实数解,其中,则的取值范围是( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知点是直线上的一点,将直线绕点逆时针方向旋转角,所得直线方程是,若将它继续旋转角,所得直线方程是,则直线的方程是_.14如图是一个算法的伪代码,运行后输出的值为_15某高校组织学生辩论赛,六位评委为选手成绩打出分数的茎叶图如图所示,若去掉一个最高分,去掉一个最低分,则所剩数据的平均数与中位数的差为_.16已知,其中,为正的常数,且,则的值为_.三、解答题:共70分。解答应写

5、出文字说明、证明过程或演算步骤。17(12分)百年大计,教育为本.某校积极响应教育部号召,不断加大拔尖人才的培养力度,为清华、北大等排名前十的名校输送更多的人才.该校成立特长班进行专项培训.据统计有如下表格.(其中表示通过自主招生获得降分资格的学生人数,表示被清华、北大等名校录取的学生人数)年份(届)2014201520162017201841495557638296108106123(1)通过画散点图发现与之间具有线性相关关系,求关于的线性回归方程;(保留两位有效数字)(2)若已知该校2019年通过自主招生获得降分资格的学生人数为61人,预测2019年高考该校考人名校的人数;(3)若从201

6、4年和2018年考人名校的学生中采用分层抽样的方式抽取出5个人回校宣传,在选取的5个人中再选取2人进行演讲,求进行演讲的两人是2018年毕业的人数的分布列和期望.参考公式:,参考数据:,18(12分)如图,是矩形,的顶点在边上,点,分别是,上的动点(的长度满足需求).设,且满足.(1)求;(2)若,求的最大值.19(12分)2019年春节期间,某超市准备举办一次有奖促销活动,若顾客一次消费达到400元则可参加一次抽奖活动,超市设计了两种抽奖方案.方案一:一个不透明的盒子中装有30个质地均匀且大小相同的小球,其中10个红球,20个白球,搅拌均匀后,顾客从中随机抽取一个球,若抽到红球则顾客获得60

7、元的返金券,若抽到白球则获得20元的返金券,且顾客有放回地抽取3次.方案二:一个不透明的盒子中装有30个质地均匀且大小相同的小球,其中10个红球,20个白球,搅拌均匀后,顾客从中随机抽取一个球,若抽到红球则顾客获得80元的返金券,若抽到白球则未中奖,且顾客有放回地抽取3次.(1)现有两位顾客均获得抽奖机会,且都按方案一抽奖,试求这两位顾客均获得180元返金券的概率;(2)若某顾客获得抽奖机会.试分别计算他选择两种抽奖方案最终获得返金券的数学期望;为了吸引顾客消费,让顾客获得更多金额的返金券,该超市应选择哪一种抽奖方案进行促销活动?20(12分)已知数列为公差不为零的等差数列,是数列的前项和,且

8、、成等比数列,.设数列的前项和为,且满足.(1)求数列、的通项公式;(2)令,证明:.21(12分)设数列满足,.(1)求数列的通项公式;(2)设,求数列的前项和.22(10分)中国古代数学经典数书九章中,将底面为矩形且有一条侧棱与底面垂直的四棱锥称为“阳马”,将四个面都为直角三角形的四面体称之为“鳖臑”.在如图所示的阳马中,底面ABCD是矩形.平面,以的中点O为球心,AC为直径的球面交PD于M(异于点D),交PC于N(异于点C).(1)证明:平面,并判断四面体MCDA是否是鳖臑,若是,写出它每个面的直角(只需写出结论);若不是,请说明理由;(2)求直线与平面所成角的正弦值.参考答案一、选择题

9、:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1A【解析】先利用最高点纵坐标求出A,再根据求出周期,再将代入求出的值.最后将代入解析式即可.【详解】由图象可知A1,所以T,.f(x)sin(2x+),将代入得)1,结合0,.sin.故选:A.【点睛】本题考查三角函数的据图求式问题以及三角函数的公式变换.据图求式问题要注意结合五点法作图求解.属于中档题.2B【解析】利用充分必要条件的定义可判断两个条件之间的关系.【详解】若,则,故或,当时,直线,直线 ,此时两条直线平行;当时,直线,直线 ,此时两条直线平行.所以当时,推不出,故“”是“”的不充分条件

10、,当时,可以推出,故“”是“”的必要条件,故选:B.【点睛】本题考查两条直线的位置关系以及必要不充分条件的判断,前者应根据系数关系来考虑,后者依据两个条件之间的推出关系,本题属于中档题.3C【解析】由题得,又,联立解方程组即可得,进而得出双曲线方程.【详解】由题得 又该双曲线的一条渐近线方程为,且被圆x2+y22cx0截得的弦长为2,所以 又 由可得:,所以双曲线的标准方程为.故选:C【点睛】本题主要考查了双曲线的简单几何性质,圆的方程的有关计算,考查了学生的计算能力.4B【解析】列举出循环的每一步,可得出输出结果.【详解】,不成立,;不成立,;不成立,;成立,输出的值为.故选:B.【点睛】本

11、题考查利用程序框图计算输出结果,一般要将算法的每一步列举出来,考查计算能力,属于基础题.5C【解析】通过图表所给数据,逐个选项验证.【详解】根据图示数据可知选项A正确;对于选项B:,正确;对于选项C:,故C不正确;对于选项D:,正确.选C.【点睛】本题主要考查柱状图是识别和数据分析,题目较为简单.6D【解析】推导出,且,设中点为,则平面,由此能表示出该容器的体积,从而求出参数的值【详解】解:如图(4),为该四棱锥的正视图,由图(3)可知,且,由为等腰直角三角形可知,设中点为,则平面,解得.故选:D【点睛】本题考查三视图和锥体的体积计算公式的应用,属于中档题.7A【解析】分析函数的奇偶性,以及该

12、函数在区间上的函数值符号,结合排除法可得出正确选项.【详解】令,可得,即函数的定义域为,定义域关于原点对称,则函数为奇函数,排除C、D选项;当时,则,排除B选项.故选:A.【点睛】本题考查利用函数解析式选择函数图象,一般要分析函数的定义域、奇偶性、单调性、零点以及函数值符号,考查分析问题和解决问题的能力,属于中等题.8B【解析】根据条件可知方程有且只有一个实根等价于函数的图象与直线只有一个交点,作出图象,数形结合即可【详解】解:因为条件等价于函数的图象与直线只有一个交点,作出图象如图,由图可知,故选:B【点睛】本题主要考查函数图象与方程零点之间的关系,数形结合是关键,属于基础题9D【解析】由等

13、比数列的性质求得a1q416,a12q532,通过解该方程求得它们的值,求首项和公比,根据等比数列的前n项和公式解答即可.【详解】设等比数列an的公比为q,a516,a3a432,a1q416,a12q532,q2,则,则,故选:D.【点睛】本题主要考查等比数列的前n项和,根据等比数列建立条件关系求出公比是解决本题的关键,属于基础题.10C【解析】由题可知,曲线与有公共点,即方程有解,可得有解,令,则,对分类讨论,得出时,取得极大值,也即为最大值,进而得出结论.【详解】解:由题可知,曲线与有公共点,即方程有解,即有解,令,则,则当时,;当时,故时,取得极大值,也即为最大值,当趋近于时,趋近于,

14、所以满足条件故选:C.【点睛】本题主要考查利用导数研究函数性质的基本方法,考查化归与转化等数学思想,考查抽象概括、运算求解等数学能力,属于难题11B【解析】求得复数,结合复数除法运算,求得的值.【详解】易知,则.故选:B【点睛】本小题主要考查复数及其坐标的对应,考查复数的除法运算,属于基础题.12B【解析】画出函数图像,根据图像知:,计算得到答案.【详解】,画出函数图像,如图所示:根据图像知:,故,且.故.故选:.【点睛】本题考查了函数零点问题,意在考查学生的计算能力和应用能力,画出图像是解题的关键.二、填空题:本题共4小题,每小题5分,共20分。13【解析】求出点坐标,由于直线与直线垂直,得

15、出直线的斜率为,再由点斜式写出直线的方程.【详解】由于直线可看成直线先绕点逆时针方向旋转角,再继续旋转角得到,则直线与直线垂直,即直线的斜率为所以直线的方程为,即故答案为:【点睛】本题主要考查了求直线的方程,涉及了求直线的交点以及直线与直线的位置关系,属于中档题.1413【解析】根据题意得到:a=0,b=1,i=2A=1,b=2,i=4,A=3,b=5,i=6,A=8,b=13,i=8不满足条件,故得到此时输出的b值为13.故答案为13.15【解析】先根据茎叶图求出平均数和中位数,然后可得结果.【详解】剩下的四个数为83,85,87,95,且这四个数的平均数,这四个数的中位数为,则所剩数据的平

16、均数与中位数的差为.【点睛】本题主要考查茎叶图的识别和统计量的计算,侧重考查数据分析和数学运算的核心素养.16【解析】把已知等式变形,展开两角和与差的三角函数,结合已知求得值【详解】解:由,得,即,又,解得:为正的常数,故答案为:【点睛】本题考查两角和与差的三角函数,考查数学转化思想方法,属于中档题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1);(2)117人;(3)分布列见解析,【解析】(1)首先求得和,再代入公式即可列方程,由此求得关于的线性回归方程;(2)根据回归直线方程计算公式,计算可得人数;(3)和被选中的人数分别为2和3,利用超几何分布分布列的计算公式,计

17、算出的分布列,并求得数学期望.【详解】(1)由题,所以线性回归方程为(若第一问求出 .)(2)当时,所以预测2019年高考该校考入名校的人数约为117人(3)由题知和被选中的人数分别为2和3,进行演讲的两人是2018年毕业的人数的所有可能取值为0,1,2,的分布列为012【点睛】本小题主要考查平均数有关计算,考查回归直线方程的计算,考查期望的计算,考查超几何分布和数据处理能力,属于中档题.18(1)(2)【解析】(1)利用正弦定理和余弦定理化简,根据勾股定理逆定理求得.(2)设,由此求得的表达式,利用三角函数最值的求法,求得的最大值.【详解】(1)设,由,根据正弦定理和余弦定理得.化简整理得.

18、由勾股定理逆定理得.(2)设,由(1)的结论知.在中,由,所以.在中,由,所以.所以,由,所以当,即时,取得最大值,且最大值为.【点睛】本小题考查正弦定理,余弦定理,勾股定理,解三角形,三角函数性质及其三角恒等变换等基础知识;考查运算求解能力,推理论证能力,化归与转换思想,应用意识.19 (1) (2)第一种抽奖方案.【解析】(1)方案一中每一次摸到红球的概率为,每名顾客有放回的抽3次获180元返金劵的概率为,根据相互独立事件的概率可知两顾客都获得180元返金劵的概率 (2)分别计算方案一,方案二顾客获返金卷的期望,方案一列出分布列计算即可,方案二根据二项分布计算期望即可 根据得出结论.【详解

19、】(1)选择方案一,则每一次摸到红球的概率为设“每位顾客获得180元返金劵”为事件A,则所以两位顾客均获得180元返金劵的概率(2)若选择抽奖方案一,则每一次摸到红球的概率为,每一次摸到白球的概率为.设获得返金劵金额为元,则可能的取值为60,100,140,180.则;.所以选择抽奖方案一,该顾客获得返金劵金额的数学期望为(元)若选择抽奖方案二,设三次摸球的过程中,摸到红球的次数为,最终获得返金劵的金额为元,则,故所以选择抽奖方案二,该顾客获得返金劵金额的数学期望为(元).即,所以该超市应选择第一种抽奖方案【点睛】本题主要考查了古典概型,相互独立事件的概率,二项分布,期望,及概率知识在实际问题中的应用,属于中档题.20(1),(2)证明见解析【解析】(1)利用首项和公差构成方程组,从而求解出的通项公式;由的通项公式求解出的表达式,根据以及,求解出的通项公式;(2)利用错位相减法求解出的前项和,根据不等关系证明即可.【详解】(1)设首项为,公差为.由题意,得,解得,当时,.当时,满足上式.(2),令数列的前项和为.两式相减得恒成立,得证.【点睛】本题考查等差数列、等比数列的综合应用,难度一般.(1)当用求解的通项公式时,一定要注意验证是否

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论