




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目
2、要求的。1做抛掷一枚骰子的试验,当出现1点或2点时,就说这次试验成功,假设骰子是质地均匀的.则在3次这样的试验中成功次数X的期望为( )A13B12C1D22设等差数列的前项和为,若,则( )A23B25C28D293已知抛物线的焦点为,为抛物线上一点,当周长最小时,所在直线的斜率为( )ABCD4新闻出版业不断推进供给侧结构性改革,深入推动优化升级和融合发展,持续提高优质出口产品供给,实现了行业的良性发展.下面是2012年至2016年我国新闻出版业和数字出版业营收增长情况,则下列说法错误的是( )A2012年至2016年我国新闻出版业和数字出版业营收均逐年增加B2016年我国数字出版业营收超
3、过2012年我国数字出版业营收的2倍C2016年我国新闻出版业营收超过2012年我国新闻出版业营收的1.5倍D2016年我国数字出版营收占新闻出版营收的比例未超过三分之一5如图,已知三棱锥中,平面平面,记二面角的平面角为,直线与平面所成角为,直线与平面所成角为,则( )ABCD62019年10月1日上午,庆祝中华人民共和国成立70周年阅兵仪式在天安门广场隆重举行.这次阅兵不仅展示了我国的科技军事力量,更是让世界感受到了中国的日新月异.今年的阅兵方阵有一个很抢眼,他们就是院校科研方阵.他们是由军事科学院、国防大学、国防科技大学联合组建若已知甲、乙、丙三人来自上述三所学校,学历分别有学士、硕士、博
4、士学位.现知道:甲不是军事科学院的;来自军事科学院的不是博士;乙不是军事科学院的;乙不是博士学位;国防科技大学的是研究生则丙是来自哪个院校的,学位是什么( )A国防大学,研究生B国防大学,博士C军事科学院,学士D国防科技大学,研究生7设为虚数单位,复数,则实数的值是( )A1B-1C0D28已知集合为自然数集,则下列表示不正确的是( )ABCD9将一张边长为的纸片按如图(1)所示阴影部分裁去四个全等的等腰三角形,将余下部分沿虚线折叠并拼成一个有底的正四棱锥模型,如图(2)放置,如果正四棱锥的主视图是正三角形,如图(3)所示,则正四棱锥的体积是( )ABCD10如图,双曲线的左,右焦点分别是直线
5、与双曲线的两条渐近线分别相交于两点.若则双曲线的离心率为( )ABCD11已知复数z满足(i为虚数单位),则在复平面内复数z对应的点位于( )A第一象限B第二象限C第三象限D第四象限12设i为数单位,为z的共轭复数,若,则( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知集合U1,3,5,9,A1,3,9,B1,9,则U(AB)_.14某同学周末通过抛硬币的方式决定出去看电影还是在家学习,抛一枚硬币两次,若两次都是正面朝上,就在家学习,否则出去看电影,则该同学在家学习的概率为_.15如图所示梯子结构的点数依次构成数列,则_.16若,则_三、解答题:共70分。解答应写出文字说
6、明、证明过程或演算步骤。17(12分)已知椭圆C的离心率为且经过点(1)求椭圆C的方程;(2)过点(0,2)的直线l与椭圆C交于不同两点A、B,以OA、OB为邻边的平行四边形OAMB的顶点M在椭圆C上,求直线l的方程.18(12分)已知函数(),且只有一个零点.(1)求实数a的值;(2)若,且,证明:.19(12分)己知函数.(1)当时,求证:;(2)若函数,求证:函数存在极小值.20(12分)已知椭圆的短轴长为,离心率,其右焦点为.(1)求椭圆的方程;(2)过作夹角为的两条直线分别交椭圆于和,求的取值范围.21(12分)如图,直角三角形所在的平面与半圆弧所在平面相交于,,,分别为,的中点,
7、是上异于,的点, .(1)证明:平面平面;(2)若点为半圆弧上的一个三等分点(靠近点)求二面角的余弦值.22(10分)已知函数(1)若函数有且只有一个零点,求实数的取值范围;(2)若函数对恒成立,求实数的取值范围.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1C【解析】每一次成功的概率为p=26=13,X服从二项分布,计算得到答案.【详解】每一次成功的概率为p=26=13,X服从二项分布,故EX=133=1.故选:C.【点睛】本题考查了二项分布求数学期望,意在考查学生的计算能力和应用能力.2D【解析】由可求,再求公差,再求解即可
8、.【详解】解:是等差数列,又,公差为,故选:D【点睛】考查等差数列的有关性质、运算求解能力和推理论证能力,是基础题.3A【解析】本道题绘图发现三角形周长最小时A,P位于同一水平线上,计算点P的坐标,计算斜率,即可【详解】结合题意,绘制图像要计算三角形PAF周长最小值,即计算PA+PF最小值,结合抛物线性质可知,PF=PN,所以,故当点P运动到M点处,三角形周长最小,故此时M的坐标为,所以斜率为,故选A【点睛】本道题考查了抛物线的基本性质,难度中等4C【解析】通过图表所给数据,逐个选项验证.【详解】根据图示数据可知选项A正确;对于选项B:,正确;对于选项C:,故C不正确;对于选项D:,正确.选C
9、.【点睛】本题主要考查柱状图是识别和数据分析,题目较为简单.5A【解析】作于,于,分析可得,再根据正弦的大小关系判断分析得,再根据线面角的最小性判定即可.【详解】作于,于.因为平面平面,平面.故,故平面.故二面角为.又直线与平面所成角为,因为,故.故,当且仅当重合时取等号.又直线与平面所成角为,且为直线与平面内的直线所成角,故,当且仅当平面时取等号.故.故选:A【点睛】本题主要考查了线面角与线线角的大小判断,需要根据题意确定角度的正弦的关系,同时运用线面角的最小性进行判定.属于中档题.6C【解析】根据可判断丙的院校;由和可判断丙的学位.【详解】由题意甲不是军事科学院的,乙不是军事科学院的;则丙
10、来自军事科学院;由来自军事科学院的不是博士,则丙不是博士;由国防科技大学的是研究生,可知丙不是研究生,故丙为学士.综上可知,丙来自军事科学院,学位是学士.故选:C.【点睛】本题考查了合情推理的简单应用,由条件的相互牵制判断符合要求的情况,属于基础题.7A【解析】根据复数的乘法运算化简,由复数的意义即可求得的值.【详解】复数,由复数乘法运算化简可得,所以由复数定义可知,解得,故选:A.【点睛】本题考查了复数的乘法运算,复数的意义,属于基础题.8D【解析】集合为自然数集,由此能求出结果【详解】解:集合为自然数集,在A中,正确;在B中,正确;在C中,正确;在D中,不是的子集,故D错误故选:D【点睛】
11、本题考查命题真假的判断、元素与集合的关系、集合与集合的关系等基础知识,考查运算求解能力,是基础题9B【解析】设折成的四棱锥的底面边长为,高为,则,故由题设可得,所以四棱锥的体积,应选答案B10A【解析】易得,过B作x轴的垂线,垂足为T,在中,利用即可得到的方程.【详解】由已知,得,过B作x轴的垂线,垂足为T,故,又所以,即,所以双曲线的离心率.故选:A.【点睛】本题考查双曲线的离心率问题,在作双曲线离心率问题时,最关键的是找到的方程或不等式,本题属于容易题.11D【解析】根据复数运算,求得,再求其对应点即可判断.【详解】,故其对应点的坐标为.其位于第四象限.故选:D.【点睛】本题考查复数的运算
12、,以及复数对应点的坐标,属综合基础题.12A【解析】由复数的除法求出,然后计算【详解】,故选:A.【点睛】本题考查复数的乘除法运算,考查共轭复数的概念,掌握复数的运算法则是解题关键二、填空题:本题共4小题,每小题5分,共20分。135【解析】易得ABA1,3,9,则U(AB)514【解析】采用列举法计算古典概型的概率.【详解】抛掷一枚硬币两次共有4种情况,即(正,正),(正,反),(反,正),(反,反),在家学习只有1种情况,即(正,正),故该同学在家学习的概率为.故答案为:【点睛】本题考查古典概型的概率计算,考查学生的基本计算能力,是一道基础题.15【解析】根据图像归纳,根据等差数列求和公式
13、得到答案.【详解】根据图像:,故,故.故答案为:.【点睛】本题考查了等差数列的应用,意在考查学生的计算能力和应用能力.16【解析】因为,由二倍角公式得到 ,故得到 故答案为三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1)(2)【解析】(1)根据椭圆的离心率、椭圆上点的坐标以及列方程,由此求得,进而求得椭圆的方程.(2)设出直线的方程,联立直线的方程和椭圆的方程,写出韦达定理.根据平行四边形的性质以及向量加法的几何意义得到,由此求得点的坐标,将的坐标代入椭圆方程,化简后可求得直线的斜率,由此求得直线的方程.【详解】(1)由椭圆的离心率为,点在椭圆上,所以,且 解得,所以椭
14、圆的方程为 (2)显然直线的斜率存在,设直线的斜率为,则直线的方程为,设,由消去得,所以,由已知得,所以,由于点都在椭圆上,所以,展开有,又,所以,经检验满足,故直线的方程为.【点睛】本小题主要考查根据椭圆的离心率和椭圆上一点的坐标求椭圆方程,考查直线和椭圆的位置关系,考查运算求解能力,属于中档题.18(1)(2)证明见解析【解析】(1)求导可得在上,在上,所以函数在时,取最小值,由函数只有一个零点,观察可知则有,即可求得结果.(2)由(1)可知为最小值,则构造函数(),求导借助基本不等式可判断为减函数,即可得,即则有,由已知可得,由,可知 ,因为时,为增函数,即可得证得结论.【详解】(1)(
15、).因为,所以,令得,且,在上;在上;所以函数在时,取最小值,当最小值为0时,函数只有一个零点,易得,所以,解得.(2)由(1)得,函数,设(),则,设(),则,所以为减函数,所以,即,所以,即,又,所以,又当时,为增函数,所以,即.【点睛】本题考查借助导数研究函数的单调性及最值,考查学生分析问题的能力,及逻辑推理能力,难度困难.19(1)证明见解析(2)证明见解析【解析】(1)求导得,由,且,得到,再利用函数在上单调递减论证.(2)根据题意,求导,令,易知; ,易知当时,;当时,函数单调递增,而,又,由零点存在定理得,使得,使得,有从而得证.【详解】(1)依题意,因为,且,故,故函数在上单调
16、递减,故.(2)依题意,令,则;而,可知当时,故函数在上单调递增,故当时,;当时,函数单调递增,而,又,故,使得,故,使得,即函数单调递增,即单调递增;故当时,故函数在上单调递减,在上单调递增,故当时,函数有极小值.【点睛】本题考查利用导数研究函数的性质,还考查推理论证能力以及函数与方程思想,属于难题.20(1);(2).【解析】(1)由已知短轴长求出,离心率求出关系,结合,即可求解;(2)当直线的斜率都存在时,不妨设直线的方程为,直线与椭圆方程联立,利用相交弦长公式求出,斜率为,求出,得到关于的表达式,根据表达式的特点用“”判别式法求出范围,当有一斜率不存在时,另一条斜率为,根据弦长公式,求
17、出,即可求出结论.【详解】(1)由得,又由得,则,故椭圆的方程为.(2)由(1)知,当直线的斜率都存在时,由对称性不妨设直线的方程为,由,设,则,则,由椭圆对称性可设直线的斜率为,则,.令,则,当时,当时,由得,所以,即,且.当直线的斜率其中一条不存在时,根据对称性不妨设设直线的方程为,斜率不存在,则,此时.若设的方程为,斜率不存在,则,综上可知的取值范围是.【点睛】本题考查椭圆标准方程、直线与椭圆的位置关系,注意根与系数关系、弦长公式、函数最值、椭圆性质的合理应用,意在考查逻辑推理、计算求解能力,属于难题.21(1)详见解析;(2).【解析】(1)由直径所对的圆周角为,可知,通过计算,利用勾
18、股定理的逆定理可以判断出为直角三角形,所以有.由已知可以证明出,这样利用线面垂直的判定定理可以证明平面,利用面面垂直的判定定理可以证明出平面平面;(2)以为坐标原点,分别以垂直于平面向上的方向、向量所在方向作为轴、轴、轴的正方向,建立如图所示的空间直角坐标系,求出相应点的坐标,求出平面的一个法向量和平面的法向量,利用空间向量数量积运算公式,可以求出二面角的余弦值.【详解】解:(1)证明:因为半圆弧上的一点,所以.在中,分别为的中点,所以,且.于是在中, ,所以为直角三角形,且. 因为,,所以. 因为, 所以平面.又平面,所以平面平面. (2)由已知,以为坐标原点,分别以垂直于、向量所在方向作为轴、轴、轴的正方向,建立如图所示的空间直角坐标系,则,, ,. 设平面的一个法向量为,则即,取,得. 设平面的法向量,则即,取,得. 所以, 又二面角为锐角,所以二面角的余弦值为. 【点睛】本题考查了利用线面垂直判定面面垂直、利用空间向量数量积求二面角的余弦值问题.22(1);(2).【解析】(1)求导得到,讨论和两种情况,计算函数的单调性,得到,再讨论,三种情况,计算得到答案.(2)计算得到,讨论,两种情
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 供热公司收购合同范本
- 买方单方面违约合同范本
- 上海租赁牌照合同范本
- 2024年遵义市赤水市公益性岗位人员招聘考试真题
- Unit 1 A new start:Understanding ideas ① 教学设计 -2024-2025学年外研版(2024年)英语七年级 上册
- 出售大型废船合同范本
- 临时供电协议合同范本
- 2024年民主与科学杂志社招聘考试真题
- 劳务合同范本修灶台
- 上海疫情物质供货合同范本
- 《人工智能导论》(第2版)高职全套教学课件
- 39 《出师表》对比阅读-2024-2025中考语文文言文阅读专项训练(含答案)
- 蛇胆川贝液在动物模型中的药理作用研究
- GB/T 44260-2024虚拟电厂资源配置与评估技术规范
- 中国煤炭地质总局公开招聘报名表
- AQ 1064-2008 煤矿用防爆柴油机无轨胶轮车安全使用规范(正式版)
- 电子商务数据分析基础(第二版) 课件 模块1、2 电子商务数据分析概述、基础数据采集
- YB-T+4190-2018工程用机编钢丝网及组合体
- 高大模板安全施工施工安全保证措施
- 比亚迪公司应收账款管理的问题及对策分析
- 【高考真题】2024年新课标全国Ⅱ卷高考语文真题试卷(含答案)
评论
0/150
提交评论