版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡
2、一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1函数(其中是自然对数的底数)的大致图像为( )ABCD2已知三棱柱的所有棱长均相等,侧棱平面,过作平面与平行,设平面与平面的交线为,记直线与直线所成锐角分别为,则这三个角的大小关系为( )ABCD3记个两两无交集的区间的并集为阶区间如为2阶区间,设函数,则不等式的解集为( )A2阶区间B3阶区间C4阶区间D5阶区间4已知椭圆的左、右焦点分别为、,过的直线交椭圆于A,B两点,交y轴于点M,若、M是线段AB的三等分点,则椭圆的离心率为( )ABCD5是正四面体的面内一动点,为棱中点,记
3、与平面成角为定值,若点的轨迹为一段抛物线,则( )ABCD6已知函数,若对任意,都有成立,则实数的取值范围是( )ABCD7已知等差数列的公差为-2,前项和为,若,为某三角形的三边长,且该三角形有一个内角为,则的最大值为( )A5B11C20D258设分别为的三边的中点,则( )ABCD9已知集合,若,则的最小值为( )A1B2C3D410已知定义在上的可导函数满足,若是奇函数,则不等式的解集是( )ABCD11已知定义在上的偶函数,当时,设,则( )ABCD12已知,则( )A2BCD3二、填空题:本题共4小题,每小题5分,共20分。13假如某人有壹元、贰元、伍元、拾元、贰拾元、伍拾元、壹佰
4、元的纸币各两张,要支付贰佰壹拾玖(219)元的货款,则有_种不同的支付方式.14已知 ,则_.15春节期间新型冠状病毒肺炎疫情在湖北爆发,为了打赢疫情防控阻击战,我省某医院选派2名医生,6名护士到湖北、两地参加疫情防控工作,每地一名医生,3名护士,其中甲乙两名护士不到同一地,共有_种选派方法.16如图所示,边长为1的正三角形中,点,分别在线段,上,将沿线段进行翻折,得到右图所示的图形,翻折后的点在线段上,则线段的最小值为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知二阶矩阵A=abcd,矩阵A属于特征值1=-1的一个特征向量为1=1-1,属于特征值2=4的一
5、个特征向量为2=32.求矩阵A.18(12分)已知函数()求函数的极值;()若,且,求证:19(12分)已知函数(1)当时,求不等式的解集;(2)若函数的值域为A,且,求a的取值范围.20(12分)在平面四边形中,已知,.(1)若,求的面积;(2)若求的长.21(12分)设函数,.(1)解不等式;(2)若对任意的实数恒成立,求的取值范围.22(10分)如图,内接于圆O,AB是圆O的直径,四边形DCBE为平行四边形,平面ABC,(1)求证:平面ACD;(2)设,表示三棱锥B-ACE的体积,求函数的解析式及最大值参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只
6、有一项是符合题目要求的。1D【解析】 由题意得,函数点定义域为且,所以定义域关于原点对称, 且,所以函数为奇函数,图象关于原点对称, 故选D.2B【解析】利用图形作出空间中两直线所成的角,然后利用余弦定理求解即可.【详解】如图,设为的中点,为的中点,由图可知过且与平行的平面为平面,所以直线即为直线,由题易知,的补角,分别为,设三棱柱的棱长为2,在中,;在中,;在中,.故选:B【点睛】本题主要考查了空间中两直线所成角的计算,考查了学生的作图,用图能力,体现了学生直观想象的核心素养.3D【解析】可判断函数为奇函数,先讨论当且时的导数情况,再画出函数大致图形,将所求区间端点值分别看作对应常函数,再由
7、图形确定具体自变量范围即可求解【详解】当且时,.令得.可得和的变化情况如下表:令,则原不等式变为,由图像知的解集为,再次由图像得到的解集由5段分离的部分组成,所以解集为5阶区间. 故选:D【点睛】本题考查由函数的奇偶性,单调性求解对应自变量范围,导数法研究函数增减性,数形结合思想,转化与化归思想,属于难题4D【解析】根据题意,求得的坐标,根据点在椭圆上,点的坐标满足椭圆方程,即可求得结果.【详解】由已知可知,点为中点,为中点,故可得,故可得;代入椭圆方程可得,解得,不妨取,故可得点的坐标为,则,易知点坐标,将点坐标代入椭圆方程得,所以离心率为,故选:D.【点睛】本题考查椭圆离心率的求解,难点在
8、于根据题意求得点的坐标,属中档题.5B【解析】设正四面体的棱长为,建立空间直角坐标系,求出各点的坐标,求出面的法向量,设的坐标,求出向量,求出线面所成角的正弦值,再由角的范围,结合为定值,得出为定值,且的轨迹为一段抛物线,所以求出坐标的关系,进而求出正切值【详解】由题意设四面体的棱长为,设为的中点,以为坐标原点,以为轴,以为轴,过垂直于面的直线为轴,建立如图所示的空间直角坐标系,则可得,取的三等分点、如图,则,所以、,由题意设,和都是等边三角形,为的中点,平面,为平面的一个法向量,因为与平面所成角为定值,则,由题意可得,因为的轨迹为一段抛物线且为定值,则也为定值,可得,此时,则,.故选:B.【
9、点睛】考查线面所成的角的求法,及正切值为定值时的情况,属于中等题6D【解析】先将所求问题转化为对任意恒成立,即得图象恒在函数图象的上方,再利用数形结合即可解决.【详解】由得,由题意函数得图象恒在函数图象的上方,作出函数的图象如图所示过原点作函数的切线,设切点为,则,解得,所以切线斜率为,所以,解得.故选:D.【点睛】本题考查导数在不等式恒成立中的应用,考查了学生转化与化归思想以及数形结合的思想,是一道中档题.7D【解析】由公差d=-2可知数列单调递减,再由余弦定理结合通项可求得首项,即可求出前n项和,从而得到最值.【详解】等差数列的公差为-2,可知数列单调递减,则,中最大,最小,又,为三角形的
10、三边长,且最大内角为, 由余弦定理得,设首项为,即得,所以或,又即,舍去,d=-2前项和.故的最大值为.故选:D【点睛】本题考查等差数列的通项公式和前n项和公式的应用,考查求前n项和的最值问题,同时还考查了余弦定理的应用.8B【解析】根据题意,画出几何图形,根据向量加法的线性运算即可求解.【详解】根据题意,可得几何关系如下图所示:,故选:B【点睛】本题考查了向量加法的线性运算,属于基础题.9B【解析】解出,分别代入选项中 的值进行验证.【详解】解:,.当 时,,此时不成立.当 时,,此时成立,符合题意.故选:B.【点睛】本题考查了不等式的解法,考查了集合的关系.10A【解析】构造函数,根据已知
11、条件判断出的单调性.根据是奇函数,求得的值,由此化简不等式求得不等式的解集.【详解】构造函数,依题意可知,所以在上递增.由于是奇函数,所以当时,所以,所以.由得,所以,故不等式的解集为.故选:A【点睛】本小题主要考查构造函数法解不等式,考查利用导数研究函数的单调性,考查化归与转化的数学思想方法,属于中档题.11B【解析】根据偶函数性质,可判断关系;由时,求得导函数,并构造函数,由进而判断函数在时的单调性,即可比较大小.【详解】为定义在上的偶函数,所以所以;当时,则,令则,当时,则在时单调递增,因为,所以,即,则在时单调递增,而,所以,综上可知,即,故选:B.【点睛】本题考查了偶函数的性质应用,
12、由导函数性质判断函数单调性的应用,根据单调性比较大小,属于中档题.12A【解析】利用分段函数的性质逐步求解即可得答案【详解】,;故选:【点睛】本题考查了函数值的求法,考查对数的运算和对数函数的性质,是基础题,解题时注意函数性质的合理应用二、填空题:本题共4小题,每小题5分,共20分。131【解析】按照个位上的9元的支付情况分类,三个数位上的钱数分步计算,相加即可【详解】9元的支付有两种情况,或者,当9元采用方式支付时,200元的支付方式为,或者或者共3种方式,10元的支付只能用1张10元,此时共有种支付方式;当9元采用方式支付时:200元的支付方式为,或者或者共3种方式,10元的支付只能用1张
13、10元,此时共有种支付方式;所以总的支付方式共有种故答案为:1【点睛】本题考查了分类加法计数原理和分步乘法计数原理,属于中档题做题时注意分类做到不重不漏,分步做到步骤完整14【解析】对原方程两边求导,然后令求得表达式的值.【详解】对等式两边求导,得,令,则.【点睛】本小题主要考查二项式展开式,考查利用导数转化已知条件,考查赋值法,属于中档题.1524【解析】先求出每地一名医生,3名护士的选派方法的种数,再减去甲乙两名护士到同一地的种数即可.【详解】解:每地一名医生,3名护士的选派方法的种数有,若甲乙两名护士到同一地的种数有,则甲乙两名护士不到同一地的种数有.故答案为:.【点睛】本题考查利用间接
14、法求排列组合问题,正难则反,是基础题.16【解析】设,在中利用正弦定理得出关于的函数,从而可得的最小值【详解】解:设,则,在中,由正弦定理可得,即,当即时,取得最小值故答案为【点睛】本题考查正弦定理解三角形的应用,属中档题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17A=2321【解析】运用矩阵定义列出方程组求解矩阵A【详解】由特征值、特征向量定义可知,A1=11,即abcd1-1=-11-1,得a-b=-1,c-d=1.同理可得3a+2b=12,3c+2d=8.解得a=2,b=3,c=2,d=1.因此矩阵A=2321【点睛】本题考查了由矩阵特征值和特征向量求矩阵,只需运用
15、定义得出方程组即可求出结果,较为简单18 ()极大值为:,无极小值;()见解析.【解析】()求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可求出函数的极值;()得到,根据函数的单调性问题转化为证明,即证,令,根据函数的单调性证明即可【详解】() 的定义域为且令,得;令,得在上单调递增,在上单调递减函数的极大值为,无极小值(), ,即由()知在上单调递增,在上单调递减且,则要证,即证,即证,即证即证由于,即,即证令则 恒成立 在递增在恒成立【点睛】本题考查了函数的单调性、最值问题,考查导数的应用以及分类讨论思想,转化思想,考查不等式的证明,考查运算求解能力及化归与转化思想,关键是能够
16、构造出合适的函数,将问题转化为函数最值的求解问题,属于难题19(1)或(2)【解析】(1)分类讨论去绝对值即可;(2)根据条件分a3和a3两种情况,由2,1A建立关于a的不等式,然后求出a的取值范围.【详解】(1)当a1时,f(x)|x+1|.f(x)|2x+1|1,当x1时,原不等式可化为x12x2,x1;当时,原不等式可化为x+12x2,x1,此时不等式无解;当时,原不等式可化为x+12x,x1,综上,原不等式的解集为x|x1或x1.(2)当a3时,函数g(x)的值域Ax|3+axa3.2,1A,a5;当a3时,函数g(x)的值域Ax|a3x3+a.2,1A,a1,综上,a的取值范围为(,
17、51,+).【点睛】本题考查了绝对值不等式的解法和利用集合间的关于求参数的取值范围,考查了转化思想和分类讨论思想,属于中档题.20(1);(2).【解析】(1)在三角形中,利用余弦定理列方程,解方程求得的长,进而由三角形的面积公式求得三角形的面积.(2)利用诱导公式求得,进而求得,利用两角差的正弦公式,求得,在三角形中利用正弦定理求得,在三角形中利用余弦定理求得的长.【详解】(1)在中,解得,.(2)在中,.【点睛】本小题主要考查正弦定理、余弦定理解三角形,考查三角形的面积公式,属于中档题.21 (1);(2)【解析】试题分析:(1)将绝对值不等式两边平方,化为二次不等式求解(2)将问题化为分段函数问题,通过分类讨论并根据恒成立问题的解法
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【正版授权】 IEC 60335-2-15:2024 EXV-CMV EN Household and similar electrical appliances - Safety - Part 2-15: Particular requirements for appliances for heating liquids
- 淮阴师范学院《田径与户外运动(1)》2021-2022学年第一学期期末试卷
- 淮阴师范学院《市场调查与预测》2023-2024学年第一学期期末试卷
- 淮阴师范学院《民间美术》2022-2023学年第一学期期末试卷
- 淮阴师范学院《影视特效制作》2023-2024学年第一学期期末试卷
- DB6505T186-2024双峰种公驼保健技术规程
- 文书模板-《护士节系列活动方案》
- 搪瓷工艺的技术革新与工业升级考核试卷
- 微软办公软件应用培训考核试卷
- 低温仓储系统的运行与调试考核试卷
- GB/T 42455.2-2024智慧城市建筑及居住区第2部分:智慧社区评价
- 地 理期中测试卷(一) 2024-2025学年地理湘教版七年级上册
- 2024年山东济南轨道交通集团限公司招聘95人历年高频难、易错点500题模拟试题附带答案详解
- 江苏省建筑与装饰工程计价定额(2014)电子表格版
- 华为财务管理(6版)-华为经营管理丛书
- 开盘八法概述
- 佛山佛罗伦萨小镇市调报告课堂PPT
- 江苏省电力公司员工奖惩办法(试行)
- 毕业设计(论文)汽车照明系统常见故障诊断与排除
- 中国建设银行网上银行电子回单
- (完整版)百万英镑课文
评论
0/150
提交评论