实验五 序列相关的检验和修正_第1页
实验五 序列相关的检验和修正_第2页
实验五 序列相关的检验和修正_第3页
实验五 序列相关的检验和修正_第4页
实验五 序列相关的检验和修正_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、实验五序列相关的检验及修正例题:中国居民总量消费函数数据:年份GDPCONSCPITAXGDPCXY19783605.61759.146.21519.287802.66678.93806.819794092.62011.547.07537.828694.77552.14273.419804592.92331.250.62571.709073.37943.94605.319815008.82627.951.90629.899650.98437.25063.419825590.02902.952.95700.0210557.19235.15482.319836216.23231.154.00775

2、.5911511.510075.25983.519847362.73742.055.47947.3513273.311565.46746.019859076.74687.460.652040.7914965.711600.87728.6198610508.55302.164.572090.3716274.613037.28211.4198712277.46126.169.302140.3617716.314627.88840.0198815388.67868.182.302390.4718698.215793.69560.3198917311.38812.697.002727.4017846.

3、715034.99085.2199019347.89450.9100.002821.8619347.816525.99450.9199122577.410730.6103.422990.1721830.818939.510375.7199227565.213000.1110.033296.9125052.422056.111815.1199336938.116412.1126.204255.3029269.525897.613004.8199450217.421844.2156.655126.8832057.128784.213944.6199563216.928369.7183.416038

4、.0434467.531175.415467.9199674163.633955.9198.666909.8237331.933853.717092.5199781658.536921.5204.218234.0439987.535955.418080.2199886531.639229.3202.599262.8042712.738140.519363.9199991125.041920.4199.7210682.5845626.440277.620989.6200098749.045854.6200.5512581.5149239.142965.622864.42001108972.449

5、213.2201.9415301.3853962.846385.624370.22002120350.352571.3200.3217636.4560079.051274.926243.72003136398.856834.4202.7320017.3167281.057407.128034.52004160280.463833.5210.6324165.6876095.764622.730306.02005188692.171217.5214.4228778.5488001.274579.633214.02006221170.580120.5217.6534809.72101617.5856

6、24.136811.61、建立回归模型,模型的OLS估计Y = P +P X +pt 01 t t(1)录入数据打开 EViews6,点“File” T New” T “Workfile选择 “Dated-regular frequency”,在 Frequency 后选择“Annual”,在 Start data 后输入 1978, 在End data后输入2006,点击“ok”。在命令行输入:DATA X Y,回车将数据复制粘贴到Group中的表格中:估计回归方程 在命令行输入命令:LS Y C X,回车点八、或者在主菜单中点“Quick”“Estimate Equation”,在 Spe

7、cification 中输入 Y C X,“确定”。得到如下输出:写出估计结果:Y = 2091.28 + 0.4375 X(6.243)(47.059)R 2 =0.9880R 2 = 0.9875F=2214.537D.W.=0.277 2、序列相关的检验(1) 图示检验法作残差序列的时序图:保存残差虚列:GENR E=RESID这种模式的残差意味着模型可能存在正的序列相关性。接着连续几期都大于0,做和的关系图:tt 1SCAT E(-1) E2,400 -| TOC o 1-5 h z 2,000 -* *1,600 -*11,200 - 800 -400 -f0-.-400 - 0),

8、表明模型存在正的序列相关性。(2)DW检验由OLS估计的结果可知:D.W.=0.277。查DW分布的临界值表,k=2, n=29时,=1.34, d =1.48,显然00.277,因此模型存在一阶正的自相关。(3)回归检验法拟合模型: = P +8,并运用OLS估计模型:LS E E(-1) tt1t得到如下结果:O Equation: UNTITLED Workfile: XULIEX1ANGGUAN:U.|匝Idbject| Print II Name | Feeni|Estimate I ForecastStatsR巳吕ichDependent Variable: EMethod: Le

9、astSquaresate: 11/07/12 Time: 21:17Sample (adjusted): 1979 2006Included observations: 28 after adjustmentsCoefficientStd. Error t-StatisticProb.0.94S9720.1164608.1404910.0000R-squared0.710391Mean dependent var43.09574Adjusted R-squared0710391S.D. dependent var1031.932S.E. of regression555.3373Akaike

10、 info criterion15.51209Sum squared resid8326787Schwarz criterion15.55967Log likelihood-216.1693Hannan-Quinn criter.15.52663urbin-Watson stat0.576494写出回归结果:e = 0.949tt1(8.148)回归系数的t统计量为8.148,伴随概率P=0.0000va=0.05,表明原模型存在一阶序列相 关。拟合模型:e = P e +P e +,并运用OLS估计模型:LS E E(-1) E(-2) t 1 t12 t2t得到如下结果:Dependent

11、 Variable: EMethod: Least SquaresDate: 11/07/12 Time: 21:24Sample (adjusted): 1930 2006Included observations: 27 after adjustmentsCoefficientStd. Error t-StatisticProb.1.6&86910.15224310.895000.0000E(-2)-0.8643560.155255-55673450.0000R-squared0.364051Mean dependent var86.25222Adjusted R-squared0.8&8

12、613S.D. dependent var1025.517S.E. of regression385.6093Akaike info criterion14.81872Sum squared resid371737 4.Schwarz criterion14.91470Log likelihood-198.0527Hannan-Quinn criter.14.84726urbin-Watson stat2.317512写出回归结果:Ae e=1.659 0.864tt1t2(10.895) (-5.567)回归系数-和七的t统计量分别为10.895、-5.567,相应的伴随概率P=0.0000

13、va=0.05, 表明原模型存在二阶序列相关。拟合模型: = P +P +P +8,并运用OLS估计模型:LS E E(-1) E(-2) t 1 t-12 t-23 t-3tE(-3),回车,得到如下结果:Dependent Variable: EMethod: Least Squaresate: 11/07/12 Time: 2136Sample (adjusted): 1981 2006Included observations: 26 after adjustmentsCoefficientStd. Errort-StatisticProb.E(-1)1 4953670.2054217

14、.2795340.0000E(-2)-0 4741000.371327-1.2767720.2144-0.2060350.241900-1.1824510.2491R-squared0.867062Mean dependent va126.5562Adjusted R-squared0.855502S.D. dependent var1023787S.E. of regression3S9.1710Akaike info criterion1437408Sum squaredesid3433444.Schwarz criterion15.01925Log likelihood-1903631H

15、annan-Quinn criter.14.91583Durbin-Watson stat2.170417写出回归结果:八一一一一e = 1.495。1 - 0.4742 2 - 0.286。3(7.280) (-1.277)(-1.182)回归系数、的t统计量为7.280,相应的伴随概率P1=0.0000a=0.05,表明、显著不为零,但乃和乙的t统计量分别为-1.277、-1.182,相应的伴随概率P2=0.2144, P3=0.2491,均大于a=0.05,表明原模型不存在三阶序列相关。综上,原模型有二阶序列相关。(4)LM检验首先采用OLS估计模型,在弹出的Equation窗口,点Vi

16、ewResidual TestsrSerial correlation LM Test.,弹出下面的对话框:点“OK”。得到下面的输出:Breusch-Godfrey Serial Correlation LM TestF-statistic55.34401Prob. F(2,25)0.0000Obs*R-squared2365636Prob. Chi-Square(20.0000Test Equation: ependentVariable: RESIDMethod: Least SquaresDate: 11/07/12 Time:21:47Sample: 1973 2006Include

17、d observations: 29Presample missing value lagged residuals set to zero.CoefficientStd. Errort-StatisticProb.c100.2419170.94010.5864150.5629X-0.0051020.005431-0.93072903609RESIDf-1)1 4631020.1793258.1589260.0000RESID (-2)-0.6124870.224943-2.7227930.0116R-squared0 815754Mean dependent var-1.69E-12Adju

18、sted R-squared0 793644S.D. dependent var1039.573S.E. of regression472.2406Akaike info criterion15.20030Sum squared resid5575280.Schwarz criterion15-468&9Log likelihood-217.5643Hannan-Quinn criter.15.33936F-statistic36.39601Durbin-Watson stat1.946335ProbfF-statistic0.000000从上面的输出可知:LM=23.65686, Prob.

19、Chi-Square(2)=0.0000,小于a=0.05,且辅助回 归中RESID(-1)和 RESID(-2)的系数均显著不为0 (对应t统计量的P值均小于0.05),说明 模型具有2节序列相关。在 Equation 窗口,点 ViewResidual TestsSerial correlation LM Tes在弹出的对话 框里将滞后阶数改为3:点“OK”。得到下面的输出:Breusch-Godfrey Serial Correlation LM Test:F-statistic33.03667Prob. F(3,24)0.0000ObsR-squared23.96054Prob. Ch

20、i-Square(3)0.0000Test Equation:Dependent Variable: RESIDMethod: Least Squares ate: 11/07/12 Time: 21:52Sample: 1978 2006Included observations: 29Presample missing value lagged residuals set to zero.CoefficientStd. Error t-StatisticProb.C29.00937179.43970.1616210.3730X-0.0023040.005910-0.3399030.7000

21、RESID(-1)1.3501960.2010136.7168020.0000RESID (-2)-0.2997830.342530-0.37520 S0.3901RESID (-3-0.3063710.254757-1.2025980.2409R-squared0.326225Mean dependent var-1.69E-12Adjusted R-squared0.79726SS.D. dependent var1039.573S.E. of regression468.0815Akaike info criterion15.29075Sum squared resid5253408.S

22、chwarz criterion15.52649Log likelihood-216.7158Hannan-Quinn criter.1536458F-statistic23.52750Durbin-Watson stat1.864232Prob(F-statistic0.000000这时,LM=23.96054,Prob.Chi-Square(2)=0.0000,小于=0.05,但辅助回归中 RESID(-2) 和RESID(-3)的系数不显著(对应t统计量的P值均大于0.05),说明模型仅存在2阶序列相 关,不具有3阶的序列相关。3、序列相关的修正(1)广义差分法已知模型具有2阶序列相关,

23、在命令行输入命令:LS Y C X AR(1) AR(2)回车得到下面的输出:Dependent Variable: YMethod: Least SquaresDate: 11/07/12 Time: 21:56Sample (adjusted): 1980 2006Included observations: 27 after adjustmentsConvergence achieved after 64 iterationsCoefficientStd. Errort-StatisticProb.C13034S.32636223.0.0494450.9610X0.2795940.064

24、3824.3092590.0003AR1)1.3902020.2130136.5263850.0000AR2)-0.3921790.233399-1.6305830.1064R-squared0.990829Mean dependent var15656.87Adjusted R-squared0.993676S.D. dependent var9324.872S.E. of regression3393329Akaike info criterion14.62779Sum squared resid2648377.Schwarz criterion14.31977Log likelihood-193.4752Hannan-Quinn criter.14.63488F-statistic6536974 urbin-Watson stat1.951415Prob(F-statistic)0.000000Inverted AR Roots1.0039写出修正后的模型:*=130348.8+0.2796X+1.3902AR(1)-0.3922AR(2)(0.049)(4.309)(6.526)(-1.681)3=0.99883=0.9987F=6536.97D.W=1.9514(2)序列相关稳健估计法在主菜单中点“Quick” “Estimate Equat

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论