版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第二单元(圆柱、圆锥)单元备课小学数学第十二册(人教版)天河区华阳小学 杨海英单元总目标: 1、认识圆柱、圆锥的各部分的名称,掌握圆柱、圆锥的特征。2、理解圆柱的表面积、侧面积、体积的意义。 会推导表面积、 侧面积、 体积的公式,认识“进一法”取近似值,能灵活解决实际问题。3、掌握圆锥体积公式的推导过程,能灵活解决实际问题。4、培养学生观察、比较、归纳的能力,以及空间观念。5、培养学生逻辑思考能力,有条理性的解决问题的能力。单元重点:圆柱体体积的计算单元难点:( 1)圆柱体体积公式的推导过。( 2)圆柱体侧面积、表面积的计算。( 2)利用圆柱体、圆锥体等底等高条件下的关系解有关复杂应用题。突出
2、重点、突破难点的关键: 充分运用直观教具,进行割拼演示、实验,有目的、有步骤地引导学生观察、思考,推导出计算公式和有关概念。单元难点的剖析: ( 1) 表现为:学生难于想到把一圆柱体的立体图形转化成什么图形来研究。怎样把它转化。原因:圆柱体和长方体在表面看来并没有什么联系。并且学生还很难由圆与圆柱的联系,而想到圆能转化成长方形来研究,圆柱就可以转化成长方体来研究。解决策略:首先回忆研究圆的面积计算时把圆转化成什么图形?如何剪拼成了这个学过的图形?借助多媒体课件把一个个完全一样的圆形堆成一个圆柱体,通过这个过程发展学生的空间想象力进行猜想:圆柱体能剪拼成什么图形,请学生试试看。2)表现为:对圆柱
3、体的侧面积公式容易获得, 但学生对已知 R 或 D 求侧面积的问题,学生转不过,容易用底面积乘高来计算。而对表面积的计算,由于表面积公式中涉及的公式较多,学生往往不小心就弄混公式。( 3)表现为:在具体的问题情境中会用错公式,如:求侧面积的求成了表面积,求体积的求成了表面积等。原因:学生可能对概念、公式记忆较熟,但在具体的问题环境下用错公式。主要还是学生对概念的感知不够。解决策略: ( 1 )为新课教学做好准备,充分复习好圆的周长的计算方法、面积公式的推导过程。借助实物多让学生感知概念的意义,不能死记硬背,要能用自己话说清楚。特别对中下生应多结合实物或图形指出问题要求的部分。公式一定让学生动手
4、操作参与到推导过程中,不能把公式直接交给学生。( 4)学生自备圆柱体形状的物体,每节课的新课铺垫、例题教学、或是练习讲评都借助于具体的实物,让学生一边口述、一边指着实物来说,加强感知。单元策略: 基于本单元是研究几何图形的有关知识,教学中主要采用学生动手操作、观察、实验等直观手段辅助教学。多让学生参与获得公式或经验。如:圆柱体展开图的特征、侧面积、表面积、体积及圆锥体的体积计算。错例的估计和采集: 概念辨析题: ( 1)一只铁皮水桶能装水多少升是求水桶的( ) 。 ( 2)做一只圆柱体的油桶,至少用多少铁皮,是求油桶的( ) ( 3 )做一节铁皮水管,要多少铁皮是求水管的( ) ( 4 )给个
5、圆柱体的花瓶包装在盒子里,需用多大的盒子是求花瓶的( )分析及策略 :这些属于概念不清的问题,因为这些知识点本身有联系又有区别,所以易混,因此教学中重点在新授中注意让学生多体验、多感受。还要在综合练习中加强对比,沟通它们的联系和区别。解决问题: ( 1)一个圆锥形的沙堆,底面直径是 2 米,高是 0.5 米, 如果每立方米是800 千克, 这堆沙子一共多少千克?写出基本关系式再解答( 2)有一个礼堂内有8 根直径是 50 厘米、高 5 米的圆柱形的柱子,用了 8 千克的红色油漆粉刷,每平方米需用多少油漆?写出基本关系再解答分析及策略: 此类型的错误主要是公式用错,原因还是对概念不清,解题思路不
6、明,因此,教学中在保证理解概念的前提下多让学生讲思路、强调解答步骤的书写要有条理。有关圆柱体和圆锥体的混合题: ( 1)等底等高的圆柱体和圆锥体,圆锥体的体积是圆柱体的体积的( ) ,圆柱体体积比圆锥体体积多 () , 圆锥体积比圆柱体少()( 2)一个圆柱体积是96 立方厘米,与它等底等底高的( ) 立方厘米, 圆锥体积比圆柱体积少 ( )立方厘米。( 3) 一个圆锥和一个圆柱等底等高, 它们体积之和是36立方分米,圆柱体积比圆锥大( )立方分米。分析及策略: 此类型题的错因主要是对圆锥体积公式的推导过程还只是一个圆锥体积公式的获得过程,是停在表面上的认识,并没有真正通过实验过程对两者在一定
7、条件下的关系弄清楚。因此这个推导过程中应让学生把两种几何体的体积关系,能反说、正说、比多少等都能说清。练习题的分析: 重点讲解的题目: 39 页第 10 题(重点说明生活中常说的圆柱体的长也就是数学意义上的圆柱体的高) 。 40 页的 13 题(体积公式与比例知识的综合运用,即利用底面积一定时体积和高成正比例的关系来确定两个圆柱体体积的比,求出第二个圆柱体的体积,最后求出它们的差。 ) 45 页的第 6 题(关键是培养学生的实践能力,了解测量圆锥的高的方法。 ) 、第 8 题(训练学生的解题思路,先算什么,再算什么。 ) 、第 11 题(由圆锥的体积:等底等高的圆柱的体积=1 : 3,那么现在
8、它们的比是 1: 6,底是相等的那说明圆柱的高是圆锥高的2 倍,于是圆柱的高是9.6。实际上是圆锥与圆柱体积关系的灵活应用。 )课时安排: 1、圆柱的认识 31 页至 33 页 及例 12、圆柱的表面积33 页例 2例 33、圆柱的体积公式的推导36 页例 4 及补充一道已知 R 求 V 的例题。、认识圆柱的容积 37 页例 5、 圆柱有关公式的对比练习 39 页 8、 9(增加不同位置类型的圆柱体) 39 页 7、 106、圆锥的认识 41 页7、圆锥的体积公式的推导 42 页至 43 页例 18、圆锥体积的应用 43 页例 2第三课时课例教案: 天河区华阳小学 杨海英第三课时: 计算圆柱体
9、的体积36 页例 4 及补充例题 (已知 R求 V)目标: 1、 使学生知道圆柱体体积公式的推导过程, 理解圆柱体体积的计算公式,并能正确应用公式计算圆柱体体积。2、再次培养学生利用转化的思想探索新知的意识。重点:圆柱体的体积公式的推导。难点:圆柱体体积公式的推导教具和学具: 教师准备课件一个,投影仪,学生准备圆柱形的橡皮 12 块。重点包含要素的分析: 1 、 让学生能从知识间或图形的联系的角度想到把圆柱体转化为长方体来研究它的体积。逐渐培养学生科学的猜想能力。2、体积公式的推导过程是学生重点掌握的内容,并且掌握转化前后两种图形各个量间的关系,也是灵活运用公式的关键。与其它教学重点的联系:
10、掌握 V=SH 是解决有关求圆柱体的体积或容积基础,同时也是下一步学习圆锥体体积计算的基础。突出重点的策略:1、回忆圆形面积的推导过程,利用媒体课件演示把一个个完全一样的圆形堆成圆柱体的过程来启发学生猜想:圆柱体能切拼成我们学过的什么图形呢?激发学生的思维。学生有前面的推测, 让学生小组合作用实物(学生自备圆柱体形状的橡皮)操作,验证猜想,探索体积的计算方法。3、补充一个已知 R 求 V 的例题进一步突出求V必须先求So突出V=SH的基础性。教学过程: 一、复习引入:体积的概念我们学过求哪些几何图形的体积?怎样求?(为学习圆柱体的体积的意义做迁移,并为学生原有知识结构填充新知做好准备)同学们知
11、道什么是圆柱体的体积吗?想知道怎样计算圆柱体的体积吗?这节课我们一起来探索圆柱体的计算方法。出课题二、新课探索: 1 、 ;以前我们所研究过的几何图形面积、体积的计算方法时,使用最多的是什么方法?如:圆的面积公式是怎样得来的呢?请看多媒体课件演示过程。接着请同学们仔细观察(课件演示把一个个完全一样的圆堆成一个圆柱体)能否也利用转化的思想把圆柱体转化成学过的几何图形?2、转化成什么图形,小组讨论。 (猜想)3、汇报猜想的结果。4、动手实践:把圆柱体切拼成近似的长方体。5、思考讨论:转化后的长方体与原来的圆柱体各个部分有什么联系?6、汇报,全班交流。长方体的体积= 圆柱体的体积长方体的高 = 圆柱体的高长方体的底面积= 圆柱体的底面积7、根据以上过程请在小组内对照图形讲述圆柱体体积的计算公式。汇报如下:长方体的体积=底面积X高圆柱体的体积=底面积X高V=Sh8 小结:正方体、长方体、圆柱体的体积的计算方法V=Sh三、公式的应用: 1、教学例题4:一根圆柱形钢材,底面积是 50 平方厘米,高是2.1 米。它的体积是多少?带领学生画图。 (培养学生会画图帮助分析的能力)让学生讲方法,尝试列式。教师
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《分析人类活动破坏生态环境的实例》说课稿3篇
- 风险管理的法律与伦理问题培训
- 家庭与学校之间的桥梁计划
- 酒店安保服务的提升与改进计划
- 产业升级投资合同三篇
- 2024年二手车电商项目提案报告
- 虾塘施工合同范本
- 修理厂劳动合同范本
- 底薪合同范本
- 黑龙江双鸭山市(2024年-2025年小学五年级语文)统编版开学考试((上下)学期)试卷及答案
- 第5章金融资产ppt课件
- 硬笔书法兴趣小组(社团)活动计划+教案
- (高清正版)JJF(浙)1149-2018生物实验用干式恒温器校准规范
- 廉洁校园你我共塑PPT课件(带内容)
- 建设银行股份关联交易申报及信息披露系统操作手册新一代
- 水文信息采集与处理习题
- 星级酒店服务技能大赛活动方案
- 义务教育《道德与法治》课程标准(2022年版)
- 中职数学认识多面体与旋转体(课堂PPT)
- 宇视编解码器产品讲解
- 上海版英语六年级全册知识点整理
评论
0/150
提交评论