




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1在中,已知,为线段上的一点,且,则的最小值为( )ABCD2已知双曲线:的左右焦点分别为,为双曲线上一点,为双曲线C渐近线上一点,均位于第一象限,且,则双曲线的离心率为( )ABCD3下图是我国第2430届奥运奖牌数的回眸和中国代表团奖
2、牌总数统计图,根据表和统计图,以下描述正确的是( )金牌(块)银牌(块)铜牌(块)奖牌总数2451112282516221254261622125027281615592832171463295121281003038272388A中国代表团的奥运奖牌总数一直保持上升趋势B折线统计图中的六条线段只是为了便于观察图象所反映的变化,不具有实际意义C第30届与第29届北京奥运会相比,奥运金牌数、银牌数、铜牌数都有所下降D统计图中前六届奥运会中国代表团的奥运奖牌总数的中位数是54.54蒙特卡洛算法是以概率和统计的理论、方法为基础的一种计算方法,将所求解的问题同一定的概率模型相联系;用均匀投点实现统计模
3、拟和抽样,以获得问题的近似解,故又称统计模拟法或统计实验法.现向一边长为的正方形模型内均匀投点,落入阴影部分的概率为,则圆周率( )ABCD5已知函数是偶函数,当时,函数单调递减,设,则的大小关系为()ABCD6过双曲线左焦点的直线交的左支于两点,直线(是坐标原点)交的右支于点,若,且,则的离心率是( )ABCD7上世纪末河南出土的以鹤的尺骨(翅骨)制成的“骨笛”(图1),充分展示了我国古代高超的音律艺术及先进的数学水平,也印证了我国古代音律与历法的密切联系.图2为骨笛测量“春(秋)分”,“夏(冬)至”的示意图,图3是某骨笛的部分测量数据(骨笛的弯曲忽略不计),夏至(或冬至)日光(当日正午太阳
4、光线)与春秋分日光(当日正午太阳光线)的夹角等于黄赤交角.由历法理论知,黄赤交角近1万年持续减小,其正切值及对应的年代如下表:黄赤交角正切值0.4390.4440.4500.4550.461年代公元元年公元前2000年公元前4000年公元前6000年公元前8000年根据以上信息,通过计算黄赤交角,可估计该骨笛的大致年代是( )A公元前2000年到公元元年B公元前4000年到公元前2000年C公元前6000年到公元前4000年D早于公元前6000年8已知双曲线的左焦点为,直线经过点且与双曲线的一条渐近线垂直,直线与双曲线的左支交于不同的两点,若,则该双曲线的离心率为( )ABCD9已知函数满足,
5、且,则不等式的解集为( )ABCD10若复数()是纯虚数,则复数在复平面内对应的点位于( )A第一象限B第二象限C第三象限D第四象限11易系辞上有“河出图,洛出书”之说,河图、洛书是中华文化,阴阳术数之源,其中河图的排列结构是一、六在后,二、七在前,三、八在左,四、九在右,五、十背中.如图,白圈为阳数,黑点为阴数.若从这10个数中任取3个数,则这3个数中至少有2个阳数且能构成等差数列的概率为( ) ABCD12如图,在四边形中,则的长度为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知ABC得三边长成公比为2的等比数列,则其最大角的余弦值为_.14已知函数的定义域为R,导
6、函数为,若,且,则满足的x的取值范围为_.15的展开式中的常数项为_16若向量与向量垂直,则_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)在直角坐标系中,曲线的参数方程为(为参数),为上的动点,点满足,点的轨迹为曲线.()求的方程;()在以为极点,轴的正半轴为极轴的极坐标系中,射线与的异于极点的交点为,与的异于极点的交点为,求.18(12分)在一次电视节目的答题游戏中,题型为选择题,只有“A”和“B”两种结果,其中某选手选择正确的概率为p,选择错误的概率为q,若选择正确则加1分,选择错误则减1分,现记“该选手答完n道题后总得分为”.(1)当时,记,求的分布列及
7、数学期望;(2)当,时,求且的概率.19(12分)已知函数,(1)当时,讨论函数的单调性;(2)若,当时,函数,求函数的最小值20(12分)已知函数(1)求f(x)的单调递增区间;(2)ABC内角A、B、C的对边分别为a、b、c,若且A为锐角,a=3,sinC=2sinB,求ABC的面积.21(12分)在三棱柱中,四边形是菱形,点M、N分别是、的中点,且.(1)求证:平面平面;(2)求四棱锥的体积.22(10分)在平面四边形中,已知,.(1)若,求的面积;(2)若求的长.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1A【解析】在
8、中,设,结合三角形的内角和及和角的正弦公式化简可求,可得,再由已知条件求得,考虑建立以所在的直线为轴,以所在的直线为轴建立直角坐标系,根据已知条件结合向量的坐标运算求得,然后利用基本不等式可求得的最小值.【详解】在中,设,即,即,即,又,则,所以,解得,.以所在的直线为轴,以所在的直线为轴建立如下图所示的平面直角坐标系,则、,为线段上的一点,则存在实数使得,设,则,消去得,所以,当且仅当时,等号成立,因此,的最小值为.故选:A.【点睛】本题是一道构思非常巧妙的试题,综合考查了三角形的内角和定理、两角和的正弦公式及基本不等式求解最值问题,解题的关键是理解是一个单位向量,从而可用、表示,建立、与参
9、数的关系,解决本题的第二个关键点在于由,发现为定值,从而考虑利用基本不等式求解最小值,考查计算能力,属于难题.2D【解析】 由双曲线的方程的左右焦点分别为,为双曲线上的一点,为双曲线的渐近线上的一点,且都位于第一象限,且,可知为的三等分点,且,点在直线上,并且,则,设,则,解得,即,代入双曲线的方程可得,解得,故选D点睛:本题考查了双曲线的几何性质,离心率的求法,考查了转化思想以及运算能力,双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法:求出,代入公式;只需要根据一个条件得到关于的齐次式,转化为的齐次式,然后转化为关于的方程(不等式),解方程(不
10、等式),即可得(的取值范围)3B【解析】根据表格和折线统计图逐一判断即可.【详解】A.中国代表团的奥运奖牌总数不是一直保持上升趋势,29届最多,错误;B.折线统计图中的六条线段只是为了便于观察图象所反映的变化,不表示某种意思,正确;C.30届与第29届北京奥运会相比,奥运金牌数、铜牌数有所下降,银牌数有所上升,错误;D. 统计图中前六届奥运会中国代表团的奥运奖牌总数按照顺序排列的中位数为,不正确;故选:B【点睛】此题考查统计图,关键点读懂折线图,属于简单题目.4A【解析】计算出黑色部分的面积与总面积的比,即可得解.【详解】由,.故选:A【点睛】本题考查了面积型几何概型的概率的计算,属于基础题.
11、5A【解析】根据图象关于轴对称可知关于对称,从而得到在上单调递增且;再根据自变量的大小关系得到函数值的大小关系.【详解】为偶函数 图象关于轴对称图象关于对称时,单调递减 时,单调递增又且 ,即本题正确选项:【点睛】本题考查利用函数奇偶性、对称性和单调性比较函数值的大小关系问题,关键是能够通过奇偶性和对称性得到函数的单调性,通过自变量的大小关系求得结果.6D【解析】如图,设双曲线的右焦点为,连接并延长交右支于,连接,设,利用双曲线的几何性质可以得到,结合、可求离心率.【详解】如图,设双曲线的右焦点为,连接,连接并延长交右支于.因为,故四边形为平行四边形,故.又双曲线为中心对称图形,故.设,则,故
12、,故.因为为直角三角形,故,解得.在中,有,所以.故选:D.【点睛】本题考查双曲线离心率,注意利用双曲线的对称性(中心对称、轴对称)以及双曲线的定义来构造关于的方程,本题属于难题.7D【解析】先理解题意,然后根据题意建立平面几何图形,在利用三角函数的知识计算出冬至日光与春秋分日光的夹角,即黄赤交角,即可得到正确选项【详解】解:由题意,可设冬至日光与垂直线夹角为,春秋分日光与垂直线夹角为,则即为冬至日光与春秋分日光的夹角,即黄赤交角,将图3近似画出如下平面几何图形:则,估计该骨笛的大致年代早于公元前6000年故选:【点睛】本题考查利用三角函数解决实际问题的能力,运用了两角和与差的正切公式,考查了
13、转化思想,数学建模思想,以及数学运算能力,属中档题8A【解析】直线的方程为,令和双曲线方程联立,再由得到两交点坐标纵坐标关系进行求解即可.【详解】由题意可知直线的方程为,不妨设.则,且将代入双曲线方程中,得到设则由,可得,故则,解得则所以双曲线离心率故选:A【点睛】此题考查双曲线和直线相交问题,联立直线和双曲线方程得到两交点坐标关系和已知条件即可求解,属于一般性题目.9B【解析】构造函数,利用导数研究函数的单调性,即可得到结论.【详解】设,则函数的导数,,即函数为减函数,,则不等式等价为,则不等式的解集为,即的解为,由得或,解得或,故不等式的解集为.故选:.【点睛】本题主要考查利用导数研究函数
14、单调性,根据函数的单调性解不等式,考查学生分析问题解决问题的能力,是难题.10B【解析】化简复数,由它是纯虚数,求得,从而确定对应的点的坐标【详解】是纯虚数,则,对应点为,在第二象限故选:B【点睛】本题考查复数的除法运算,考查复数的概念与几何意义本题属于基础题11C【解析】先根据组合数计算出所有的情况数,再根据“3个数中至少有2个阳数且能构成等差数列”列举得到满足条件的情况,由此可求解出对应的概率.【详解】所有的情况数有:种,3个数中至少有2个阳数且能构成等差数列的情况有:,共种,所以目标事件的概率.故选:C.【点睛】本题考查概率与等差数列的综合,涉及到背景文化知识,难度一般.求解该类问题可通
15、过古典概型的概率求解方法进行分析;当情况数较多时,可考虑用排列数、组合数去计算.12D【解析】设,在中,由余弦定理得,从而求得,再由由正弦定理得,求得,然后在中,用余弦定理求解.【详解】设,在中,由余弦定理得,则,从而,由正弦定理得,即,从而,在中,由余弦定理得:,则.故选:D【点睛】本题主要考查正弦定理和余弦定理的应用,还考查了数形结合的思想和运算求解的能力,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13-24【解析】试题分析:根据题意设三角形的三边长分别设为为a,2a,2a,2a2aa,2a所对的角为最大角,设为,则根据余弦定理得cos=a2+(2a)2-(2a)222a
16、2=-24,故答案为-24.考点:余弦定理及等比数列的定义.14【解析】构造函数,再根据条件确定为奇函数且在上单调递减,最后利用单调性以及奇偶性化简不等式,解得结果.【详解】依题意,令,则,故函数为奇函数,故函数在上单调递减,则,即,故,则x的取值范围为.故答案为:【点睛】本题考查函数奇偶性、单调性以及利用函数性质解不等式,考查综合分析求解能力,属中档题.15【解析】写出展开式的通项公式,考虑当的指数为零时,对应的值即为常数项.【详解】的展开式通项公式为: ,令,所以,所以常数项为.故答案为:.【点睛】本题考查二项展开式中指定项系数的求解,难度较易.解答问题的关键是,能通过展开式通项公式分析常
17、数项对应的取值.160【解析】直接根据向量垂直计算得到答案.【详解】向量与向量垂直,则,故.故答案为:.【点睛】本题考查了根据向量垂直求参数,意在考查学生的计算能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17()(为参数);()【解析】()设点,则,代入化简得到答案.()分别计算,的极坐标方程为,取代入计算得到答案.【详解】()设点,故,故的参数方程为:(为参数).(),故,极坐标方程为:;,故,极坐标方程为:.,故,故.【点睛】本题考查了参数方程,极坐标方程,弦长,意在考查学生的计算能力和转化能力.18(1)见解析,0(2)【解析】(1)即该选手答完3道题后总得分,可
18、能出现的情况为3道题都答对,答对2道答错1道,答对1道答错2道,3道题都答错,进而求解即可;(2)当时,即答完8题后,正确的题数为5题,错误的题数是3题,又,则第一题答对,第二题第三题至少有一道答对,进而求解.【详解】解:(1)的取值可能为,1,3,又因为,故,所以的分布列为:13所以(2)当时,即答完8题后,正确的题数为5题,错误的题数是3题,又已知,第一题答对,若第二题回答正确,则其余6题可任意答对3题;若第二题回答错误,第三题回答正确,则后5题可任意答对题, 此时的概率为(或).【点睛】本题考查二项分布的分布列及期望,考查数据处理能力,考查分类讨论思想.19(1)见解析 (2)的最小值为
19、【解析】(1)由题可得函数的定义域为,当时,令,可得;令,可得,所以函数在上单调递增,在上单调递减; 当时,令,可得;令,可得或,所以函数在,上单调递增,在上单调递减;当时,恒成立,所以函数在上单调递增 综上,当时,函数在上单调递增,在上单调递减;当时,函数在,上单调递增,在上单调递减;当时,函数在上单调递增 (2)方法一:当时,设,则,所以函数在上单调递减,所以,当且仅当时取等号当时,设,则,所以,设,则,所以函数在上单调递减,且,所以存在,使得,所以当时,;当时, 所以函数在上单调递增,在上单调递减,因为,所以,所以,当且仅当时取等号所以当时,函数取得最小值,且,故函数的最小值为 方法二:当时,则,令,则,所以函数在上单调递增, 又,所以存在,使得,所以函数在上单调递减,在上单调递增, 因为,所以当时,恒成立,所以当时,恒成立,所以函数在上单调递减,所以函数的最小值为20(1)(2)【解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年广东理工职业学院高职单招高职单招英语2016-2024历年频考点试题含答案解析
- 2025年广东亚视演艺职业学院高职单招职业适应性测试历年(2019-2024年)真题考点试卷含答案解析
- 2025年平凉职业技术学院高职单招(数学)历年真题考点含答案解析
- 2025年山西金融职业学院高职单招职业技能测试近5年常考版参考题库含答案解析
- 胸液引流拔管后的护理
- 2025年天津商务职业学院高职单招职业适应性测试历年(2019-2024年)真题考点试卷含答案解析
- 教育教学创新发展汇报
- T-CESA 1199-2022 人工智能 智能字符识别技术规范
- 911消防安全日课件
- 6岁中班儿童安全课件
- 2025届湖北省武汉市高考数学一模试卷含解析
- 2024年广西高考生物试卷真题(含答案)
- 承插型盘扣式脚手架安全知识培训
- TB10001-2016 铁路路基设计规范
- 乙烯裂解炉焊接施工工艺及验收规程
- 钢格栅板安装方案
- 2009东风风神s30全车电路图
- 常用钢制管件弯头、三通、异径管、管帽理论重量体积表
- 最新版个人征信报告模板-2020年-word版-可编辑-带水印(共7页)
- 天然烟用香料的芳香组分和提取工艺分析
- 连杆加工工艺详解.PPT
评论
0/150
提交评论