版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知复数,则对应的点在复平面内位于( )A第一象限B第二象限C第三象限D第四象限2某圆柱的高为2,底面周长为16,
2、其三视图如图所示,圆柱表面上的点在正视图上的对应点为,圆柱表面上的点在左视图上的对应点为,则在此圆柱侧面上,从到的路径中,最短路径的长度为( )ABCD23已知复数满足,其中是虚数单位,则复数在复平面中对应的点到原点的距离为( )ABCD4下列函数中,在区间上单调递减的是( )ABC D5如图,在中,点,分别为,的中点,若,且满足,则等于( )A2BCD6的展开式中的系数为( )A5B10C20D307复数的虚部为()A1B3C1D28已知椭圆的左、右焦点分别为、,过的直线交椭圆于A,B两点,交y轴于点M,若、M是线段AB的三等分点,则椭圆的离心率为( )ABCD9函数图象的大致形状是( )A
3、BCD10设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(xi,yi)(i=1,2,n),用最小二乘法建立的回归方程为=0.85x-85.71,则下列结论中不正确的是Ay与x具有正的线性相关关系B回归直线过样本点的中心(,)C若该大学某女生身高增加1cm,则其体重约增加0.85kgD若该大学某女生身高为170cm,则可断定其体重比为58.79kg11某中学有高中生人,初中生人为了解该校学生自主锻炼的时间,采用分层抽样的方法从高生和初中生中抽取一个容量为的样本.若样本中高中生恰有人,则的值为( )ABCD12已知命题:是“直线和直线互相垂直”的充要条件
4、;命题:对任意都有零点;则下列命题为真命题的是( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13在中,点是边的中点,则_,_.14若实数,满足,则的最小值为_15已知集合,则_16如图,在等腰三角形中,已知,分别是边上的点,且,其中且,若线段的中点分别为,则的最小值是_. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数,其中()当时,求函数的单调区间;()设,求证:;()若对于恒成立,求的最大值18(12分)本小题满分14分)已知曲线的极坐标方程为,以极点为原点,极轴为轴的非负半轴建立平面直角坐标系,直线的参数方程为(为参数),求直线被曲线
5、截得的线段的长度19(12分)已知函数f(x)|x1|x2|.若不等式|ab|ab|a|f(x)(a0,a、bR)恒成立,求实数x的取值范围20(12分)P是圆上的动点,P点在x轴上的射影是D,点M满足(1)求动点M的轨迹C的方程,并说明轨迹是什么图形;(2)过点的直线l与动点M的轨迹C交于不同的两点A,B,求以OA,OB为邻边的平行四边形OAEB的顶点E的轨迹方程21(12分)如图,四棱锥PABCD的底面是梯形BCAD,ABBCCD1,AD2,()证明;ACBP;()求直线AD与平面APC所成角的正弦值22(10分)已知函数.(1)当时,求函数的值域;(2)的角的对边分别为且,求边上的高的最
6、大值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1A【解析】利用复数除法运算化简,由此求得对应点所在象限.【详解】依题意,对应点为,在第一象限.故选A.【点睛】本小题主要考查复数除法运算,考查复数对应点的坐标所在象限,属于基础题.2B【解析】首先根据题中所给的三视图,得到点M和点N在圆柱上所处的位置,将圆柱的侧面展开图平铺,点M、N在其四分之一的矩形的对角线的端点处,根据平面上两点间直线段最短,利用勾股定理,求得结果.【详解】根据圆柱的三视图以及其本身的特征,将圆柱的侧面展开图平铺,可以确定点M和点N分别在以圆柱的高为长方形的
7、宽,圆柱底面圆周长的四分之一为长的长方形的对角线的端点处,所以所求的最短路径的长度为,故选B.点睛:该题考查的是有关几何体的表面上两点之间的最短距离的求解问题,在解题的过程中,需要明确两个点在几何体上所处的位置,再利用平面上两点间直线段最短,所以处理方法就是将面切开平铺,利用平面图形的相关特征求得结果.3B【解析】利用复数的除法运算化简z, 复数在复平面中对应的点到原点的距离为利用模长公式即得解.【详解】由题意知复数在复平面中对应的点到原点的距离为故选:B【点睛】本题考查了复数的除法运算,模长公式和几何意义,考查了学生概念理解,数学运算,数形结合的能力,属于基础题.4C【解析】由每个函数的单调
8、区间,即可得到本题答案.【详解】因为函数和在递增,而在递减.故选:C【点睛】本题主要考查常见简单函数的单调区间,属基础题.5D【解析】选取为基底,其他向量都用基底表示后进行运算【详解】由题意是的重心, ,故选:D【点睛】本题考查向量的数量积,解题关键是选取两个不共线向量作为基底,其他向量都用基底表示参与运算,这样做目标明确,易于操作6C【解析】由知,展开式中项有两项,一项是中的项,另一项是与中含x的项乘积构成.【详解】由已知,因为展开式的通项为,所以展开式中的系数为.故选:C.【点睛】本题考查求二项式定理展开式中的特定项,解决这类问题要注意通项公式应写准确,本题是一道基础题.7B【解析】对复数
9、进行化简计算,得到答案.【详解】所以的虚部为故选B项.【点睛】本题考查复数的计算,虚部的概念,属于简单题.8D【解析】根据题意,求得的坐标,根据点在椭圆上,点的坐标满足椭圆方程,即可求得结果.【详解】由已知可知,点为中点,为中点,故可得,故可得;代入椭圆方程可得,解得,不妨取,故可得点的坐标为,则,易知点坐标,将点坐标代入椭圆方程得,所以离心率为,故选:D.【点睛】本题考查椭圆离心率的求解,难点在于根据题意求得点的坐标,属中档题.9B【解析】判断函数的奇偶性,可排除A、C,再判断函数在区间上函数值与的大小,即可得出答案.【详解】解:因为,所以,所以函数是奇函数,可排除A、C;又当,可排除D;故
10、选:B.【点睛】本题考查函数表达式判断函数图像,属于中档题.10D【解析】根据y与x的线性回归方程为 y=0.85x85.71,则=0.850,y 与 x 具有正的线性相关关系,A正确;回归直线过样本点的中心(),B正确;该大学某女生身高增加 1cm,预测其体重约增加 0.85kg,C正确;该大学某女生身高为 170cm,预测其体重约为0.8517085.71=58.79kg,D错误故选D11B【解析】利用某一层样本数等于某一层的总体个数乘以抽样比计算即可.【详解】由题意,解得.故选:B.【点睛】本题考查简单随机抽样中的分层抽样,某一层样本数等于某一层的总体个数乘以抽样比,本题是一道基础题.1
11、2A【解析】先分别判断每一个命题的真假,再利用复合命题的真假判断确定答案即可.【详解】当时,直线和直线,即直线为和直线互相垂直,所以“”是直线和直线互相垂直“的充分条件,当直线和直线互相垂直时,解得.所以“”是直线和直线互相垂直“的不必要条件.:“”是直线和直线互相垂直“的充分不必要条件,故是假命题当时,没有零点,所以命题是假命题所以是真命题,是假命题,是假命题,是假命题故选:【点睛】本题主要考查充要条件的判断和两直线的位置关系,考查二次函数的图象, 考查学生对这些知识的理解掌握水平.二、填空题:本题共4小题,每小题5分,共20分。13 2 【解析】根据正弦定理直接求出,利用三角形的边表示向量
12、,然后利用向量的数量积求解即可.【详解】中,可得因为点是边的中点,所以故答案为:;.【点睛】本题主要考查了三角形的解法,向量的数量积的应用,考查计算能力,属于中档题.14【解析】由约束条件先画出可行域,然后求目标函数的最小值.【详解】由约束条件先画出可行域,如图所示,由,即,当平行线经过点时取到最小值,由可得,此时,所以的最小值为.故答案为.【点睛】本题考查了线性规划的知识,解题的一般步骤为先画出可行域,然后改写目标函数,结合图形求出最值,需要掌握解题方法.15【解析】由于,则16【解析】根据条件及向量数量积运算求得,连接,由三角形中线的性质表示出.根据向量的线性运算及数量积公式表示出,结合二
13、次函数性质即可求得最小值.【详解】根据题意,连接,如下图所示:在等腰三角形中,已知,则由向量数量积运算可知线段的中点分别为则由向量减法的线性运算可得所以因为,代入化简可得因为所以当时, 取得最小值因而故答案为: 【点睛】本题考查了平面向量数量积的综合应用,向量的线性运算及模的求法,二次函数最值的应用,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17()函数的单调增区间为,单调减区间为;()证明见解析;().【解析】()利用二次求导可得,所以在上为增函数,进而可得函数的单调增区间为,单调减区间为;()利用导数可得在区间上存在唯一零点,所以函数在递减,在,递增,则,进
14、而可证;()条件等价于对于恒成立,构造函数,利用导数可得的单调性,即可得到的最小值为,再次构造函数(a),利用导数得其单调区间,进而求得最大值【详解】()当时,则,所以,又因为,所以在上为增函数,因为,所以当时,为增函数,当时,为减函数,即函数的单调增区间为,单调减区间为;(),则令,则(1),所以在区间上存在唯一零点,设零点为,则,且,当时,当,所以函数在递减,在,递增,由,得,所以,由于,从而;()因为对于恒成立,即对于恒成立,不妨令,因为,所以的解为,则当时,为增函数,当时,为减函数,所以的最小值为,则,不妨令(a),则(a),解得,所以当时,(a),(a)为增函数,当时,(a),(a)
15、为减函数,所以(a)的最大值为,则的最大值为【点睛】本题考查利用导数研究函数的单调性和最值,以及函数不等式恒成立问题的解法,意在考查学生等价转化思想和数学运算能力,属于较难题18【解析】解:解:将曲线的极坐标方程化为直角坐标方程为,即,它表示以为圆心,2为半径圆, 4分直线方程的普通方程为, 8分圆C的圆心到直线l的距离,10分故直线被曲线截得的线段长度为14分19x【解析】由题知,|x1|x2|恒成立,故|x1|x2|不大于的最小值|ab|ab|abab|2|a|,当且仅当(ab)(ab)0时取等号,的最小值等于2.x的范围即为不等式|x1|x2|2的解,解不等式得x.20(1)点M的轨迹C
16、的方程为,轨迹C是以,为焦点,长轴长为4的椭圆(2)【解析】(1)设,根据可求得,代入圆的方程可得所求轨迹方程;根据轨迹方程可知轨迹是以,为焦点,长轴长为的椭圆;(2)设,与椭圆方程联立,利用求得;利用韦达定理表示出与,根据平行四边形和向量的坐标运算求得,消去后得到轨迹方程;根据求得的取值范围,进而得到最终结果.【详解】(1)设,则由知:点在圆上 点的轨迹的方程为:轨迹是以,为焦点,长轴长为的椭圆(2)设,由题意知的斜率存在设,代入得:则,解得:设,则四边形为平行四边形又 ,消去得: 顶点的轨迹方程为【点睛】本题考查圆锥曲线中的轨迹方程的求解问题,关键是能够利用已知中所给的等量关系建立起动点横
17、纵坐标满足的关系式,进而通过化简整理得到结果;易错点是求得轨迹方程后,忽略的取值范围.21()见解析()【解析】(I)取的中点,连接,通过证明平面得出;(II)以为原点建立坐标系,求出平面的法向量,通过计算与的夹角得出与平面所成角【详解】(I)证明:取AC的中点M,连接PM,BM,ABBC,PAPC,ACBM,ACPM,又BMPMM,AC平面PBM,BP平面PBM,ACBP(II)解:底面ABCD是梯形BCAD,ABBCCD1,AD2,ABC120,ABBC1,AC,BM,ACCD,又ACBM,BMCDPAPC,CM,PM,PB,cosBMP,PMB120,以M为原点,以MB,MC的方向为x轴,y轴的正方向,以平面ABCD在M处的垂线为z轴建立坐标系Mxyz,如图所示:则A(0,0),C(0,0),P(,0,),D(1,0),(1,0),(0,0),(,),设平面ACP的法向量为(x,y,z),则,即,令x得(,0,1),cos,直线AD与平面APC所成角的正弦值为|cos,|【点睛】本题考查异面直线垂直的证明,考查直线与平
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论