版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知等差数列中,若,则此数列中一定为0的是( )ABCD2已知抛物线的焦点为,是抛物线上两个不同的点,若,则线段的中点到轴的距离为( )A5B3CD23函数在上单调递增,则实数的取值范
2、围是( )ABCD4如图,在三棱锥中,平面,分别是棱,的中点,则异面直线与所成角的余弦值为A0BCD15甲、乙、丙、丁四位同学利用暑假游玩某风景名胜大峡谷,四人各自去景区的百里绝壁、千丈瀑布、原始森林、远古村寨四大景点中的一个,每个景点去一人已知:甲不在远古村寨,也不在百里绝壁;乙不在原始森林,也不在远古村寨;“丙在远古村寨”是“甲在原始森林”的充分条件;丁不在百里绝壁,也不在远古村寨若以上语句都正确,则游玩千丈瀑布景点的同学是( )A甲B乙C丙D丁6赵爽是我国古代数学家、天文学家,大约公元222年,赵爽为周髀算经一书作序时,介绍了“勾股圆方图”,又称“赵爽弦图”(以弦为边长得到的正方形是由个
3、全等的直角三角形再加上中间的一个小正方形组成的,如图(1),类比“赵爽弦图”,可类似地构造如图(2)所示的图形,它是由个全等的三角形与中间的一个小正六边形组成的一个大正六边形,设,若在大正六边形中随机取一点,则此点取自小正六边形的概率为( )ABCD7已知底面是等腰直角三角形的三棱锥P-ABC的三视图如图所示,俯视图中的两个小三角形全等,则( )APA,PB,PC两两垂直B三棱锥P-ABC的体积为CD三棱锥P-ABC的侧面积为8已知数列的前项和为,且,则( )ABCD9的内角的对边分别为,若,则内角( )ABCD10已知函数,若成立,则的最小值是( )ABCD11已知盒中有3个红球,3个黄球,
4、3个白球,且每种颜色的三个球均按,编号,现从中摸出3个球(除颜色与编号外球没有区别),则恰好不同时包含字母,的概率为( )ABCD12已知数列为等差数列,且,则的值为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13三棱锥中,点是斜边上一点.给出下列四个命题:若平面,则三棱锥的四个面都是直角三角形;若,平面,则三棱锥的外接球体积为;若,在平面上的射影是内心,则三棱锥的体积为2;若,平面,则直线与平面所成的最大角为.其中正确命题的序号是_(把你认为正确命题的序号都填上)14已知、为正实数,直线截圆所得的弦长为,则的最小值为_.15执行如图所示的伪代码,若输出的y的值为13,则输入
5、的x的值是_.16甲、乙两人同时参加公务员考试,甲笔试、面试通过的概率分别为和;乙笔试、面试通过的概率分别为和若笔试面试都通过才被录取,且甲、乙录取与否相互独立,则该次考试只有一人被录取的概率是_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数,其中,为自然对数的底数(1)当时,求函数的极值;(2)设函数的导函数为,求证:函数有且仅有一个零点18(12分)已知函数的定义域为.(1)求实数的取值范围;(2)设实数为的最小值,若实数,满足,求的最小值.19(12分)已知函数(1)解不等式;(2)若函数存在零点,求的求值范围20(12分)已知函数,记不等式的解集为
6、.(1)求;(2)设,证明:.21(12分)已知椭圆的左右焦点分别是,点在椭圆上,满足(1)求椭圆的标准方程;(2)直线过点,且与椭圆只有一个公共点,直线与的倾斜角互补,且与椭圆交于异于点的两点,与直线交于点(介于两点之间),是否存在直线,使得直线,的斜率按某种排序能构成等比数列?若能,求出的方程,若不能,请说理由.22(10分)已知函数.(1)当时,求函数的图象在处的切线方程;(2)讨论函数的单调性;(3)当时,若方程有两个不相等的实数根,求证:.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1A【解析】将已知条件转化为的形式,
7、由此确定数列为的项.【详解】由于等差数列中,所以,化简得,所以为.故选:A【点睛】本小题主要考查等差数列的基本量计算,属于基础题.2D【解析】由抛物线方程可得焦点坐标及准线方程,由抛物线的定义可知,继而可求出,从而可求出的中点的横坐标,即为中点到轴的距离.【详解】解:由抛物线方程可知,即,.设 则,即,所以.所以线段的中点到轴的距离为.故选:D.【点睛】本题考查了抛物线的定义,考查了抛物线的方程.本题的关键是由抛物线的定义求得两点横坐标的和.3B【解析】对分类讨论,当,函数在单调递减,当,根据对勾函数的性质,求出单调递增区间,即可求解.【详解】当时,函数在上单调递减,所以,的递增区间是,所以,
8、即.故选:B.【点睛】本题考查函数单调性,熟练掌握简单初等函数性质是解题关键,属于基础题.4B【解析】根据题意可得平面,则即异面直线与所成的角,连接CG,在中,易得,所以,所以,故选B5D【解析】根据演绎推理进行判断【详解】由可知甲乙丁都不在远古村寨,必有丙同学去了远古村寨,由可知必有甲去了原始森林,由可知丁去了千丈瀑布,因此游玩千丈瀑布景点的同学是丁故选:D【点睛】本题考查演绎推理,掌握演绎推理的定义是解题基础6D【解析】设,则,小正六边形的边长为,利用余弦定理可得大正六边形的边长为,再利用面积之比可得结论.【详解】由题意,设,则,即小正六边形的边长为,所以,在中,由余弦定理得,即,解得,所
9、以,大正六边形的边长为,所以,小正六边形的面积为,大正六边形的面积为,所以,此点取自小正六边形的概率.故选:D.【点睛】本题考查概率的求法,考查余弦定理、几何概型等基础知识,考查运算求解能力,属于基础题7C【解析】根据三视图,可得三棱锥P-ABC的直观图,然后再计算可得.【详解】解:根据三视图,可得三棱锥P-ABC的直观图如图所示,其中D为AB的中点,底面ABC.所以三棱锥P-ABC的体积为,、不可能垂直,即不可能两两垂直,.三棱锥P-ABC的侧面积为.故正确的为C.故选:C.【点睛】本题考查三视图还原直观图,以及三棱锥的表面积、体积的计算问题,属于中档题.8C【解析】根据已知条件判断出数列是
10、等比数列,求得其通项公式,由此求得.【详解】由于,所以数列是等比数列,其首项为,第二项为,所以公比为.所以,所以.故选:C【点睛】本小题主要考查等比数列的证明,考查等比数列通项公式,属于基础题.9C【解析】由正弦定理化边为角,由三角函数恒等变换可得【详解】,由正弦定理可得,三角形中,故选:C【点睛】本题考查正弦定理,考查两角和的正弦公式和诱导公式,掌握正弦定理的边角互化是解题关键10A【解析】分析:设,则,把用表示,然后令,由导数求得的最小值详解:设,则,令,则,是上的增函数,又,当时,当时,即在上单调递减,在上单调递增,是极小值也是最小值,的最小值是故选A点睛:本题易错选B,利用导数法求函数
11、的最值,解题时学生可能不会将其中求的最小值问题,通过构造新函数,转化为求函数的最小值问题,另外通过二次求导,确定函数的单调区间也很容易出错11B【解析】首先求出基本事件总数,则事件“恰好不同时包含字母,”的对立事件为“取出的3个球的编号恰好为字母,”, 记事件“恰好不同时包含字母,”为,利用对立事件的概率公式计算可得;【详解】解:从9个球中摸出3个球,则基本事件总数为(个),则事件“恰好不同时包含字母,”的对立事件为“取出的3个球的编号恰好为字母,”记事件“恰好不同时包含字母,”为,则.故选:B【点睛】本题考查了古典概型及其概率计算公式,考查了排列组合的知识,解答的关键在于正确理解题意,属于基
12、础题12B【解析】由等差数列的性质和已知可得,即可得到,代入由诱导公式计算可得【详解】解:由等差数列的性质可得,解得,故选:B【点睛】本题考查等差数列的下标和公式的应用,涉及三角函数求值,属于基础题二、填空题:本题共4小题,每小题5分,共20分。13【解析】对,由线面平行的性质可判断正确;对,三棱锥外接球可看作正方体的外接球,结合外接球半径公式即可求解;对,结合题意作出图形,由勾股定理和内接圆对应面积公式求出锥体的高,则可求解;对,由动点分析可知,当点与点重合时,直线与平面所成的角最大,结合几何关系可判断错误;【详解】对于,因为平面,所以,又,所以平面,所以,故四个面都是直角三角形,正确;对于
13、,若,平面,三棱锥的外接球可以看作棱长为4的正方体的外接球,体积为,正确;对于,设内心是,则平面,连接,则有,又内切圆半径,所以,故,三棱锥的体积为,正确; 对于,若,平面,则直线与平面所成的角最大时,点与点重合,在中,即直线与平面所成的最大角为,不正确,故答案为:.【点睛】本题考查立体几何基本关系的应用,线面垂直的性质及判定、锥体体积、外接球半径求解,线面角的求解,属于中档题14【解析】先根据弦长,半径,弦心距之间的关系列式求得,代入整理得,利用基本不等式求得最值.【详解】解:圆的圆心为,则到直线的距离为,由直线截圆所得的弦长为可得,整理得,解得或(舍去),令,又,当且仅当时,等号成立,则.
14、故答案为:.【点睛】本题考查直线和圆的位置关系,考核基本不等式求最值,关键是对目标式进行变形,变成能用基本不等式求最值的形式,也可用换元法进行变形,是中档题.158【解析】根据伪代码逆向运算求得结果.【详解】输入,若,则,不合题意若,则,满足题意本题正确结果:【点睛】本题考查算法中的语言,属于基础题.16【解析】分别求得甲、乙被录取的概率,根据独立事件概率公式可求得结果.【详解】甲被录取的概率;乙被录取的概率;只有一人被录取的概率.故答案为:.【点睛】本题考查独立事件概率的求解问题,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17见解析【解析】(1)当时,函数,其
15、定义域为,则,设,易知函数在上单调递增,且,所以当时,即;当时,即,所以函数在上单调递减,在上单调递增,所以函数在处取得极小值,为,无极大值(2)由题可得函数的定义域为,设,显然函数在上单调递增,当时,所以函数在内有一个零点,所以函数有且仅有一个零点;当时,所以函数有且仅有一个零点,所以函数有且仅有一个零点;当时,因为,所以,又,所以函数在内有一个零点,所以函数有且仅有一个零点综上,函数有且仅有一个零点18(1);(2)【解析】(1)首先通过对绝对值内式子符号的讨论,将不等式转化为一元一次不等式组,再分别解各不等式组,最后求各不等式组解集的并集,得到所求不等式的解集;(2)首先确定m的值,然后
16、利用柯西不等式即可证得题中的不等式.【详解】(1)因为函数定义域为,即恒成立,所以恒成立由单调性可知当时,有最大值为4,即;(2)由(1)知,由柯西不等式知所以,即的最小值为.当且仅当,时,等号成立【点睛】本题主要考查绝对值不等式的解法,柯西不等式及其应用,意在考查学生的转化能力和计算求解能力.19(1)或 ;(2)【解析】(1)通过讨论的范围,将绝对值符号去掉,转化为求不等式组的解集,之后取并集,得到原不等式的解集;(2)将函数零点问题转化为曲线交点问题解决,数形结合得到结果.【详解】(1)有题不等式可化为,当时,原不等式可化为,解得;当时,原不等式可化为,解得,不满足,舍去;当时,原不等式
17、可化为,解得,所以不等式的解集为(2)因为,所以若函数存在零点则可转化为函数与的图像存在交点,函数在上单调增,在上单调递减,且.数形结合可知【点睛】该题考查的是有关不等式的问题,涉及到的知识点有分类讨论求绝对值不等式的解集,将零点问题转化为曲线交点的问题来解决,数形结合思想的应用,属于简单题目.20(1);(2)证明见解析【解析】(1)利用零点分段法将表示为分段函数的形式,由此解不等式求得不等式的解集.(2)将不等式坐标因式分解,结合(1)的结论证得不等式成立.【详解】(1)解:,由,解得,故.(2)证明:因为,所以,所以,所以.【点睛】本小题主要考查绝对值不等式的解法,考查不等式的证明,属于
18、基础题.21(1);(2)不能,理由见解析【解析】(1)设,则,由此即可求出椭圆方程;(2)设直线的方程为,联立直线与椭圆的方程可求得,则直线斜率为,设其方程为,联立直线与椭圆方程,结合韦达定理可得关于对称,可求得,假设存在直线满足题意,设,可得,由此可得答案【详解】解:(1)设,则,所以椭圆方程为;(2)设直线的方程为,与联立得,因为两直线的倾斜角互补,所以直线斜率为,设直线的方程为,联立整理得,所以关于对称,由正弦定理得,因为,所以,由上得,假设存在直线满足题意,设,按某种排列成等比数列,设公比为,则,所以,则此时直线与平行或重合,与题意不符,所以不存在满足题意的直线【点睛】本题主要考查直线与椭圆的位置关系,考查计算能力与推理能力,属于难题22(1);(2)当时,在上是减函数;当时,在上是增函数;(3)证明见解析.【解析】(1)当时,求得其导函数 ,可求得函数的图象在处的切线方程;(2)由已知得,得出导函数,并得出导函数取得正负的区间,可得出函数的单调性; (3)当时,由(2)得的单调区间,以当方程有两个不相等的实数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025配件产品销售合同
- 2024年金属丝绳制品项目发展计划
- 2024年玻璃仪器及实验、医疗用玻璃器皿项目资金申请报告
- 小学素描教学模板
- 小暑节气文化讲座
- 创新和个性化的室内设计
- 提高记忆力与脑功能的简单技巧
- 山西传媒学院《生殖健康与保健》2023-2024学年第一学期期末试卷
- 急性低增生性白血病
- 山西财经大学华商学院《MATAB与系统仿真》2023-2024学年第一学期期末试卷
- 油层物理(山东联盟)智慧树知到答案2024年中国石油大学(华东)
- 讲普通话、写规范字、做文明人主题班会教育
- 【马林巴独奏曲雨之舞的演奏技巧和情感处理探析5000字(论文)】
- 2024至2030年中国融媒体行业市场深度分析及发展趋势预测报告
- DL∕T 2024-2019 大型调相机型式试验导则
- 营销咨询服务合同(2024版)
- 赣南美食-英语版
- 大酒店风险分级管控和隐患排查治理双体系文件
- CJ-T129-2000玻璃纤维增强塑料外护层聚氨酯泡沫塑料预制直埋保温管
- 学校“弘扬践行教育家精神”师德师风主题教育活动实施方案
- 劳动教育智慧树知到期末考试答案章节答案2024年湖州师范学院
评论
0/150
提交评论