版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、PAGE PAGE 6高考大题专项练二高考中的三角函数与解三角形1.在平面四边形ABCD中,ADC=90,A=45,AB=2,BD=5.(1)求cosADB;(2)若DC=22,求BC.2.(2021北京高考)已知在ABC中,c=2bcos B,C=23.(1)求B的大小;(2)在三个条件中选择一个作为已知,使ABC存在且唯一确定,并求出BC边上的中线的长度.c=2b;周长为4+23;面积为SABC=334.3.在ABC中,D是BC上的点,AD平分BAC,ABD的面积是ADC面积的2倍.(1)求sinBsinC;(2)若AD=1,DC=22,求BD和AC的长.4.ABC的内角A,B,C的对边分
2、别为a,b,c.已知B=150.(1)若a=3c,b=27,求ABC的面积;(2)若sin A+3sin C=22,求C.5.(2021广西崇左二模)已知ABC中,AB=62BC=3,且AC2+2AB=5.(1)求ABC的值;(2)若P是ABC内一点,且APB=56,CPB=34,求tanPBA.6.已知函数f(x)=cos2x-3+2sinx-4sinx+4.(1)求函数f(x)的最小正周期和图象的对称轴方程;(2)求函数f(x)在区间-12,2上的值域.7.已知ABC的内角A,B,C的对边分别为a,b,c,cos22+A+cos A=54.(1)求A;(2)若b-c=33a,证明:ABC是
3、直角三角形.8.(2021新高考)记ABC的内角A,B,C的对边分别为a,b,c.已知b2=ac,点D在边AC上,BDsinABC=asin C.(1)证明:BD=b;(2)若AD=2DC,求cosABC.答案:1.解(1)在ABD中,由正弦定理得BDsinA=ABsinADB.由题设知,5sin45=2sinADB,所以sinADB=25.由题设知,ADB90,所以cosADB=1-225=235.(2)由题设及(1)知,cosBDC=sinADB=25.在BCD中,由余弦定理得BC2=BD2+DC2-2BDDCcosBDC=25+8-252225=25.所以BC=5.2.解(1)由题意及正
4、弦定理,得sinC=2sinBcosB=sin2B.C=23,0B3,02B0),AB=23x,(4+23)x=4+23,解得x=1.BC=AC=2,AB=23.设边BC的中点为D,则CD=1.在ACD中,由余弦定理,得AD2=AC2+CD2-2ACCDcosC=4+1-221-12=7,AD=7.若选,则设BC=AC=2x(x0),AB=23x.由SABC=12BCACsinC=12(2x)(2x)sin23=3x2=334,解得x=32.BC=AC=3,AB=3.设边BC的中点为D,则CD=32.在ACD中,由余弦定理,得AD2=AC2+CD2-2ACCDcosC=3+34-2332-12
5、=214,AD=212.3.解(1)SABD=12ABADsinBAD,SADC=12ACADsinCAD.因为SABD=2SADC,BAD=CAD,所以AB=2AC.由正弦定理可得sinBsinC=ACAB=12.(2)因为SABDSADC=BDDC,又DC=22,所以BD=2.在ABD和ADC中,由余弦定理知AB2=AD2+BD2-2ADBDcosADB,AC2=AD2+DC2-2ADDCcosADC.又AD=1,故AB2+2AC2=3AD2+BD2+2DC2=6.由(1)知AB=2AC,所以AC=1.4.解(1)由题设及余弦定理得28=3c2+c2-23c2cos150,解得c=-2(舍
6、去),c=2.从而a=23.ABC的面积为12232sin150=3.(2)在ABC中,A=180-B-C=30-C,所以sinA+3sinC=sin(30-C)+3sinC=sin(30+C).故sin(30+C)=22.而0C30,所以30+C=45,故C=15.5.解(1)由AB=62BC=3,知AB=3,BC=2,由AC2+2AB=5,知AC2=5-2AB=5-23.在ABC中,由余弦定理得cosABC=BC2+AB2-AC22ABBC=2+3-5+23232=22,0ABC,ABC=4.(2)PBA+PBC=4,PCB+PBC=-BPC=4,PBA=PCB.设PBA=,则在PBC中,
7、由正弦定理得PBsin=BCsin34,PB=2sin.在APB中,由正弦定理得PBsin6-=ABsin56,PB=23sin6-,sin=3sin6-=3sin6cos-cos6sin,tan=35,故tanPBA=35.6.解(1)f(x)=cos2x-3+2sinx-4sinx+4=12cos2x+32sin2x+(sinx-cosx)(sinx+cosx)=12cos2x+32sin2x+sin2x-cos2x=12cos2x+32sin2x-cos2x=sin2x-6,周期T=22=.由2x-6=k+2(kZ),得x=k2+3(kZ).故函数f(x)的图象的对称轴方程为x=k2+3(kZ).(2)x-12,2,2x-6-3,56.当2x-6=2,即x=3时,f(x)取最大值1;当2x-6=-3,即x=-12时,f(x)取最小值-32.函数f(x)在区间-12,2上的值域为-32,1.7.(1)解由已知得sin2A+cosA=54,即cos2A-cosA+14=0.所以cosA-122=0,得cosA=12.由于0A,故A=3.(2)证明由正弦定理及已知条件可得sinB
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 心衰护理课件教学课件
- 淮阴工学院《通信原理1》2022-2023学年第一学期期末试卷
- DB5116T17-2024电梯维护保养质量要求与抽查规则
- DB 3705-T 16-2024《管花肉苁蓉培育技术规程》
- 企业管理-《固定资产移交报告》
- 海水养殖的环境影响评估方法考核试卷
- 合成材料制造的工艺装备更新考核试卷
- 外卖行业的季节性波动分析考核试卷
- 煤炭行业的国际市场拓展与合作考核试卷
- 城市轨道交通的科技创新与产业发展考核试卷
- 湖北机场集团限公司2024年春季校园招聘【35人】(高频重点提升专题训练)共500题附带答案详解
- 河南省附属绿地绿化规划设计规范
- 微测网题库完整版行测
- 2023年中级会计实务试题及答案大全
- T-CPQS C010-2024 鉴赏收藏用潮流玩偶及类似用途产品
- 代运营合作服务协议
- 有限空间作业应急管理制度
- 慢性肾衰竭-课件
- 罗兰贝格-正泰集团品牌战略项目-品牌战略设计与高阶落地建议报告-20180627a
- 2024砍伐树木合同书
- 2024年02月重庆市沙坪坝区事业单位2024年第一季度公开招聘167名工作人员0笔试历年典型考题及考点研判与答案解析
评论
0/150
提交评论