




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、 课时规范练52分类加法计数原理与分步乘法计数原理 基础巩固组1.将6名留学归国人员分配到济南、青岛两地工作,若济南至少安排2人,青岛至少安排3人,则不同的安排方法数是()A.120B.150C.35D.652.某电商为某次活动设计了“和谐”“爱国”“敬业”三种红包,活动规定每人可以依次点击4次,每次都会获得三种红包的一种,若集全三种即可获奖,但三种红包出现的顺序不同对应的奖次也不同.员工甲按规定依次点击了4次,直到第4次才获奖.则他获得奖次的不同情形种数为()A.9B.12C.18D.243.若m,n均为非负整数,在做m+n的加法时各位均不进位(例如:2 019+100=2 119),则称(
2、m,n)为“简单的”有序对,而m+n称为有序对(m,n)的值,那么值为2 019的“简单的”有序对的个数是()A.100B.96C.60D.304.现有4种不同的颜色要对图形中(如图)的四个部分涂色,要求有公共边的两部分不能用同一颜色,则不同涂色方法的种数为()A.24B.30C.48D.505.某学校开设“蓝天工程博览课程”,组织6个年级的学生外出参观包括甲博物馆在内的6个博物馆,每个年级任选一个博物馆参观,则有且只有两个年级选择甲博物馆的方案有()A.A62A54种B.A6254种C.C6254种D.C62A54种6.(2020河北保定质检)三个人踢毽子,互相传递,每人每次只能踢一下,由甲
3、开始踢,经过4次传递后,毽子又被踢回给甲,则不同传递方式有()A.4种B.6种C.10种D.16种7.(多选)(2020山东实验中学高三模拟)“二进制”与我国古代的易经有着一定的联系,该书中有两类最基本的符号:“”和“”,其中“”在二进制中记作“1”,“”在二进制中记作“0”,其变化原理与“逢二进一”的法则相通.若从两类符号中任取2个符号排列,可以组成的不同的十进制数为()A.0B.1C.2D.48.从集合1,2,3,4,10中,选出5个数组成子集,使得这5个数中任意两个数的和都不等于11,则这样的子集有个.9.某校从6名教师中选派3名教师去完成4项不同的工作,每人至少完成一项,每项工作由1人
4、完成,其中甲和乙不同去,甲和丙只能同去或同不去,则不同的选派方案种数是.10.中国古代十进制的算筹计数法,在数学史上是一个伟大的创造,算筹实际上是一根根同样长短的小木棍.如图,是利用算筹表示数19的一种方法.例如:137可表示为“”,26可表示为“”.现有6根算筹,据此表示方法,若算筹不能剩余,则可以用19这9个数字表示三位数的个数为.综合提升组11.任取集合1,2,3,4,10中三个不同数a1,a2,a3,且满足a2-a12,a3-a23,则选取这样的三个数的方法种数共有()A.27B.30C.35D.4812.把2支相同的晨光签字笔,3支相同的英雄钢笔,全部分给4名优秀学生,每名学生至少1
5、支,则不同的分法有()A.24种B.28种C.32种D.36种13.现有红、黄、蓝、绿四个骰子,每个骰子的六个面上的数字分别为1,2,3,4,5,6.若同时掷这四个骰子,则四个骰子朝上的数字之积等于24的情形共有种.(请用数字作答)14.如图,矩形的对角线把矩形分成A,B,C,D四部分,现用5种不同颜色给四部分涂色,每部分涂1种颜色,要求共边的两部分颜色互异,则共有种不同的涂色方法(用数字作答).15.在冬奥会志愿者活动中,甲、乙等5人报名参加了A,B,C三个项目的志愿者工作,因工作需要,每个项目仅需1名志愿者,且甲不能参加A,B项目,乙不能参加B,C项目,那么共有种不同的志愿者分配方案.(用
6、数字作答)创新应用组16.(2020山东青岛第十七中学高三模拟)用a代表红球,b代表蓝球,c代表黑球,由分类加法计数原理及分步乘法计数原理,从1个红球和1个蓝球中取出若干个球的所有取法可由(1+a)(1+b)的展开式1+a+b+ab表示出来,如:“1”表示一个球都不取,“a”表示取出一个红球,而“ab”表示把红球和蓝球都取出来.以此类推,下列各式中,其展开式可用来表示从5个有区别的红球、5个无区别的蓝球、5个无区别的黑球中取出若干个球,且所有的蓝球都取出或都不取出的所有取法的表示是()A.(1+a+a2+a3+a4+a5)(1+b5)(1+c)5B.(1+a5)(1+b+b2+b3+b4+b5
7、)(1+c)5C.(1+a)5(1+b+b2+b3+b4+b5)(1+c5)D.(1+a)5(1+b5)(1+c+c2+c3+c4+c5)参考答案课时规范练52分类加法计数原理与分步乘法计数原理1.C6名留学归国人员分配到济南、青岛两地工作.若济南至少安排2人,青岛至少安排3人,分两类,第一类,青岛安排3人,济南安排3人,有C63=20(种);第二类,青岛安排4人,济南安排2人,有C64=15(种).根据分类加法计数原理可得20+15=35(种).故选C.2.C根据题意,若员工甲直到第4次才获奖,则其第4次才集全“和谐”“爱国”“敬业”三种红包,则甲第4次获得的红包有3种情况,前三次获得的红包
8、为其余的2种,有23-2=6(种)情况,则他获得奖次的不同情形种数为36=18(种).故选C.3.C由题意可知,只要确定了m,n即可确定,则可确定一个有序数对(m,n),则对于数m,利用分步乘法计数原理,第一位(从左向右)取法有3种:0,1,2;第二位取法有1种:0;第三位取法有2种:0,1;第四位取法有10种:0,1,2,3,4,5,6,7,8,9;所以值为2 019的“简单的”有序对的个数是31210=60.故选C.4.C根据题意,对于区域A,有4种颜色可选,有4种涂色方法;对于区域B,与区域A相邻,有3种颜色可选,有3种涂色方法;对于区域C,与区域AB相邻,有2种颜色可选,有2种涂色方法
9、;对于区域D,与区域AC相邻,有2种颜色可选,有2种涂色方法.则不同的涂色方法有4322=48(种).故选C.5.C因为有且只有两个年级选择甲博物馆,所以参观甲博物馆的年级有C62种情况,其余年级均有5种选择,所以共有54种情况,根据分步乘法计数原理可得共有C6254种情况,故选C.6.B甲第一次踢给乙时,满足条件的有3种传递方式(如图),同理,甲先传给丙时,满足条件的也有3种传递方式.故选B.7.ABC根据题意,从两类符号中任取2个符号排列的情况可分为三类.第一类,由两个“”组成,二进制数为11,转化为十进制数,为3.第二类,由两个“”组成,二进制数为00,转化为十进制数,为0.第三类,由一
10、个“”和一个“”组成,二进制数为10,01,转化为十进制数,为2,1.所以从两类符号中任取2个符号排列,可以组成的不同的十进制数为0,1,2,3,故选ABC.8.32由题意,将和等于11的放在一组:1和10,2和9,3和8,4和7,5和6.从每一小组中取一个,有C21=2(种),共有22222=32(个).9.252因为3名教师去完成4项不同的工作,每人至少完成一项,每项工作由1人完成,所以当3名教师确定时,则其中1人必须完成两项工作,故安排3名教师完成4项工作,可以先确定完成两项工作的1名人员,其方法有C31,然后再确定完成的工作,其方法有C42,然后再将剩下的两项工作分配给剩下的两人,其方
11、法有C21,故当3名教师确定时,完成工作的方法有C31C42C21种.因为甲和乙不同去,甲和丙只能同去或同不去,故有三种方法选择教师,第一种方法:甲参加,乙不参加,丙参加,再从剩下的3人中选择1人,其方法有C31种,第二种方法:甲不参加,乙参加,丙不参加,再从剩下的3人中选择2人,其方法有C32种,第三种方法:甲不参加,乙不参加,丙不参加,再从剩下的3人中选择3人,其方法有C33种;故最终选派的方法为(C31+C32+C33)C31C42C21=252(种).10.38分情况讨论,当百位数为1时,十位数为1有2种,十位数为2有2种,十位数为3有2种,十位数为4有1种,为6有2种,为7有2种,为
12、8有1种;当百位数为2时,十位数为1有2种,为2有2种,为3有1种,为6有2种,为7有1种;当百位数为3时,十位数为1有2种,十位数为2有1种,为6有1种;当百位数为4时,只有1种;当百位数为6时,十位数为1有2种,为2有2种,为3有1种,为6有2种,为7有1种;当百位数为7时,十位数为1有2种,为2有1种,为6有1种;当百位数为8,只有一种,一共有38种.11.C第一类,a3-a1=5,a1,a3的值有5种情况,则a2只有1种情况,共有51=5(种)情况;第二类,a3-a1=6,a1,a3的值有4种情况,则a2有2种情况,共有42=8(种)情况;第三类,a3-a1=7,a1,a3的值有3种情
13、况,则a2有3种情况,共有33=9(种)情况;第四类,a3-a1=8,a1,a3的值有2种情况,则a2有4种情况,共有24=8(种)情况;第五类,a3-a1=9,a1,a3的值有1种情况,则a2有5种情况,共有15=5(种)情况;则选取这样的三个数方法种数共有5+8+9+8+5=35(种),故选C.12.B第一类,有一个人分到一支钢笔和一支签字笔,这种情况下的分法:先将一支钢笔和一支签字笔分给一个人,有4种分法,将剩余的2支钢笔, 1支签字笔分给剩余3名同学,有3种分法,共有34=12(种)不同的分法;第二类,有一个人分到两支签字笔,这种情况下的分法:先将两支签字笔分给一个人,有4种情况,将剩
14、余的3支钢笔分给剩余3个人,只有1种分法,共有41=4(种)不同的分法;第三类,有一个人分到两支钢笔,这种情况的分法:先将两支钢笔分给一个人,有4种情况,再将剩余的两支签字笔和一支钢笔分给剩余的3个人,有3种分法,那共有34=12(种)不同的分法.综上所述,总共有12+4+12=28(种)不同的分法.故选B.13.52因为24=6411=6221=4321=3222,对于上述四种情形掷这四个骰子时,分别有A42=12,C41C32=12,A44=24,C41=4种情形,综上共有12+12+24+4=52(种)情形.14.260由题意,区域A有5种涂色方法;区域B有4种涂色方法;区域C的涂色方法可分2类:若C与A涂同色,区域D有4种涂色方法;若C与A涂不同色,此时区域C有3种涂色方法,区域D也有3种涂色方法.所以共有544+5433=260(种)涂色方法.15.21若甲,乙都参加,则甲只能参加C项目,乙只能参加A项目,有3种方法;若甲参加,乙不参加,则甲只能参加C项目,有A32=6(种)方法;若甲不参加,乙参加,则乙只能参加A项目,有A32=6(种)方法;若甲不参加,乙不
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年汽车减震元件项目合作计划书
- 2025年数控刃磨床项目建议书
- 2025安全生产标准化认证评估合同
- 2025年穿水冷却装置合作协议书
- 2025年超高压电缆连接件合作协议书
- eps装饰施工方案
- 法院书记员招聘2023年笔试仿真试卷带解析
- 渠道度汛施工方案
- 围挡草皮施工方案
- 供应链创新承诺助力环保行业升级3篇
- 易制毒化学品销售人员岗位职责
- 小区二次供水水箱清洗消毒的监督流程课件
- 2024年安徽省公务员【申论】考试真题及答案-(A卷+B卷+C卷)三套
- 自主智能系统知到课后答案智慧树章节测试答案2025年春哈尔滨工程大学
- GB/T 6433-2025饲料中粗脂肪的测定
- 2019版 浙科版 高中生物学 必修2 遗传与进化《第二章 染色体与遗传》大单元整体教学设计2020课标
- 【MOOC期末】《介入放射学》(东南大学)中国大学慕课答案
- DB50T 771-2017 地下管线探测技术规范
- 防灾减灾培训(安全行业讲座培训课件)
- 2024年《BIM技术介绍》课件
- 情景教学法在小学英语课堂中的有效运用研究(开题报告)
评论
0/150
提交评论