




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、苏教版必修1系列教案 江苏省兴化中学 PAGE PAGE 21王明山,江苏兴化中学023信箱 邮编225752 电子信箱第一课时根式及分数指数幂教学目的: 1. 掌握根式的概念和性质,并能熟练应用于相关计算中2. 理解分数指数幂的概念.掌握有理指数幂的运算性质.3.会对根式、分数指数幂进行互化.4培养学生用联系观点看问题.教学重点:1.分数指数幂的概念.2.分数指数幂的运算性质.教学难点:对分数指数幂概念的理解.授课类型:新授课教学过程:一、复习引入:1整数指数幂的概念 2运算性质: 3注意 可看作 = 可看作 =二、讲解新课: 1根式:计算(可用计算器)= 9 ,则3是9的平方根 ;=125
2、 ,则5是125的立方根 ;若=1296 ,则6是1296 的 4次方根 ;=693.43957 ,则3.7是693.43957的5次方根 .定义:一般地,若 则x叫做a的n次方根叫做根式,n叫做根指数,a叫做被开方数例如,27的3次方根表示为,-32的5次方根表示为,的3次方根表示为;16的4次方根表示为,即16的4次方根有两个,一个是,另一个是-,它们绝对值相等而符号相反.性质:当n为奇数时:正数的n次方根为正数,负数的n次方根为负数记作: 当n为偶数时,正数的n次方根有两个(互为相反数)记作: 负数没有偶次方根, 0的任何次方根为0注:当a0时,0,表示算术根,所以类似=2的写法是错误的
3、.常用公式根据n次方根的定义,易得到以下三组常用公式:当n为任意正整数时,()=a.例如,()=27,()=-32.当n为奇数时,=a;当n为偶数时,=|a|=.例如,=-2,=2;=3,=|-3|=3.根式的基本性质:,(a0).注意,中的a0十分重要,无此条件则公式不成立. 例如.用语言叙述上面三个公式:非负实数a的n次方根的n次幂是它本身. n为奇数时,实数a的n次幂的n次方根是a本身;n为偶数时,实数a的n次幂的n次方根是a的绝对值.若一个根式(算术根)的被开方数是一个非负实数的幂,那么这个根式的根指数和被开方数的指数都乘以或者除以同一个正整数,根式的值不变.三、讲解例题:例1求值=
4、-8 ;= |-10| = 10 ;= | = ;= |a- b| = a- b .去掉ab结果如何?练习求值:分析:(1)题需把各项被开方数变为完全平方形式,然后再利用根式运算性质;解:引例:当a0时上述推导过程主要利用了根式的运算性质,例子、用到了推广的整数指数幂运算性质(2).因此,我们可以得出正分数指数幂的意义.正数的正分数指数幂的意义 (a0,m,nN*,且n1) 要注意两点:一是分数指数幂是根式的另一种表示形式;二是根式与分数指数幂可以进行互化.另外,我们还要对正数的负分数指数幂和0的分数指数幂作如下规定.2.规定:(1) (a0,m,nN*,且n1) (2)0的正分数指数幂等于0
5、.(3)0的负分数指数幂无意义.规定了分数指数幂的意义以后,指数的概念就从整数推广到有理数指数.当a0时,整数指数幂的运算性质,对于有理指数幂也同样适用.即对于任意有理数r,s,均有下面的运算性质.3.有理指数幂的运算性质:说明:若a0,P是一个无理数,则表示一个确定的实数,上述有理指数幂的运算性质,对于无理数指数幂都适用,有关概念和证明在本书从略.三、讲解例题:例2求值:.解:练习用分数指数幂的形式表示下列各式: (式中a0) 解:例3计算下列各式(式中字母都是正数)分析:(1)题可以仿照单项式乘除法进行,首先是系数相乘除,然后是同底数幂相乘除,并且要注意符号(2)题按积的乘方计算,而按幂的
6、乘方计算,等熟练后可简化计算步骤解 练习:计算下列各式: 分析:(1)题把根式化成分数指数幂的形式,再计算(2)题先把根式化成分数指数幂的最简形式,然后计算解:五、小结 本节课学习了以下内容:1根式的概念;2根式的运算性质:当n为任意正整数时,()=a.当n为奇数时,=a;当n为偶数时,=|a|=.根式的基本性质:,(a0).3分数指数幂的意义,分数指数幂与根式的互化,有理指数幂的运算性质.六、课后作业: P47P48练习14七、板书设计(略) 第二课时分数指数幂的应用教学目的: 巩固根式和分数指数幂的概念和性质,并能熟练应用于有理指数幂的概念及运算法则进行相关计算教学重点:根式和分数指数幂的
7、概念和性质教学难点:准确应用计算.授课类型:巩固课课时安排:1课时教学过程:一、复习引入:1根式的运算性质:当n为任意正整数时,()=a.当n为奇数时,=a;当n为偶数时,=|a|=.根式的基本性质:,(a0).2分数指数幂的运算性质: 二、讲解范例:例1.用分数指数幂表示下列分式(其中各式字母均为正数)(1) () () () () (6)解:()(2) (3) ()()()例2(课本第77页 例4)计算下列各式(式中字母都是正数): ; .解:原式=2(-6)(-3);原式=说明:该例是运用分数指数幂的定义和运算性质进行计算的题,第小题是仿照单项式乘除法进行的,首先将系数相乘除,然后将同底
8、数的幂相乘除;第小题是先按积的乘方计算,再按幂的乘方计算,在计算过程中要特别注意符号. 同学们在下面做题中,刚开始时,要严格按照象例题一样的解题步骤进行,待熟练以后再简化计算步骤.例3(课本第77页 例5) 计算下列各式: ; (a0).解:原式=;原式=.说明:本例是利用分数指数幂来进行根式计算,其顺序是先把根式化为分数指数幂,再根据幂的运算性质进行计算;对于计算结果,若没有特别要求,就用分数指数幂的形式表示,若有特殊要求,可根据要求给出结果,但结果不能同时含有根号和分数指数,也不能既有分母又含有负指数例4化简:解:评述:此题注重了分子、分母指数间的联系,即,由此联想到平方差公式的特点,进而
9、使问题得到解决例5 已知x+x-1=3,求下列各式的值:分析:(1)题若平方则可出现已知形式,但开方时应注意正负的讨论;(2)题若立方则可出现(1)题形式与已知条件,需将已知条件与(1)题结论综合;或者,可仿照(1)题作平方处理,进而利用立方和公式展开解:评述:(1)题注重了已知条件与所求之间的内在联系,但开方时正负的取舍容易被学生所忽视,应强调以引起学生注意(2)题解法一注意了(1)题结论的应用,显得颇为简捷,解法二注重的是与已知条件的联系,体现了对立方和公式、平方和公式的灵活运用,耐用具有一定层次,需看透问题实质方可解决得彻底,否则可能关途而废另外,(2)题也体现了一题多解四、小结 本节课
10、学习了以下内容:熟练进行有关分数指数幂是计算,熟练掌握分数指数幂的定义和运算性质五、课后作业:课本第48页 习题2.2:.解:6. =;7. ,而(由知),; ,; . 第三课时指数函数教学目的: 1.理解指数函数的概念,并能正确作出其图象,掌握指数函数的性质.2.培养学生实际应用函数的能力教学重点:指数函数的图象、性质教学难点:指数函数的图象性质与底数a的关系.授课类型:新授课课时安排:1课时教材分析:指数函数是基本初等函数之一,应用非常广泛它是在本章学习完函数概念和两个基本性质之后较为系统地研究的第一个初等函数前面已将指数概念扩充到了有理指数幂,并给出了有理指数幂的运算性质指数函数的概念从
11、实际问题引入,这样既说明指数函数的概念来源于客观实际,也便于学生接受和培养学生用数学的意识函数图象是研究函数性质的直观图形指数函数的性质是利用图象总结出来的,这样便于学生记忆其性质和研究变化规律本节安排的图象的平行移动的例题,一是为了与初中讲二次函数图象的变化相呼应,二是为以后各章学习函数或向量的平移做些准备教学过程:一、复习引入:引例1(P57):某种细胞分裂时,由1个分裂成2个,2个分裂成4个,. 1个这样的细胞分裂 x 次后,得到的细胞个数 y 与 x 的函数关系是什么?分裂次数:1,2,3,4,x细胞个数:2,4,8,16,y由上面的对应关系可知,函数关系是.引例2:某种商品的价格从今
12、年起每年降低15%,设原来的价格为1,x年后的价格为y,则y与x的函数关系式为 在,中指数x是自变量,底数是一个大于0且不等于1的常量.我们把这种自变量在指数位置上而底数是一个大于0且不等于1的常量的函数叫做指数函数.二、新授内容:1指数函数的定义:函数叫做指数函数,其中x是自变量,函数定义域是R探究1:为什么要规定a0,且a1呢?若a=0,则当x0时,=0;当x0时,无意义. 若a0且a1在规定以后,对于任何xR,都有意义,且0. 因此指数函数的定义域是R,值域是(0,+).探究2:函数是指数函数吗?指数函数的解析式y=中,的系数是1.有些函数貌似指数函数,实际上却不是,如y=+k (a0且
13、a1,kZ);有些函数看起来不像指数函数,实际上却是,如y= (a0,且a1),因为它可以化为y=,其中0,且12.指数函数的图象和性质:在同一坐标系中分别作出函数y=,y=,y=,y=的图象.列表如下:x-3-2-1-0.500.5123y=0.130.250.50.7111.4248y=8421.410.710.50.250.13x-1.5-1-0.5-0.2500.250.511.5y=0.030.10.320.5611.783.161031.62y=31.62103.161.7810.560.320.10.03我们观察y=,y=,y=,y=的图象特征,就可以得到的图象和性质a10a1,
14、所以函数y=在R是增函数,而2.53,所以,;与的底数是0.8,它们可以看成函数 y=,当x=-0.1和-0.2时的函数值;因为00.8-0.2,所以,1;小结:对同底数幂大小的比较用的是指数函数的单调性,必须要明确所给的两个值是哪个指数函数的两个函数值;对不同底数是幂的大小的比较可以与中间值进行比较.例3,求下列函数的定义域、值域: 分析:此题要利用指数函数的定义域、值域,并结合指数函数的图象注意向学生指出函数的定义域就是使函数表达式有意义的自变量x的取值范围解(1)由x-10得x1 所以,所求函数定义域为x|x1由 ,得y1所以,所求函数值域为y|y0且y1说明:对于值域的求解,在向学生解
15、释时,可以令,考察指数函数y=,并结合图象直观地得到,以下两题可作类似处理(2)由5x-10得所以,所求函数定义域为x|由 0得y1所以,所求函数值域为y|y1(3)所求函数定义域为R由0可得+11所以,所求函数值域为y|y1通过此例题的训练,学会利用指数函数的定义域、值域去求解指数形式的复合函数的定义域、值域,还应注意书写步骤与格式的规范性练习:求下列函数的定义域和值域: 解:要使函数有意义,必须 , 当时 ; 当时 值域为 要使函数有意义,必须 即 又 值域为 例4比较大小: ,已知下列不等式,试比较m、n的大小:m n;m 10a1图象性质(1)定义域:R(2)值域:(0,+)(3)过点
16、(0,1),即x=0时,y=1(4)在 R上是增函数(4)在R上是减函数二、讲授范例:例1 求函数的单调区间,并证明解:设 则 当时, 这时 即 ,函数单调递增 当时, 这时 即 ,函数单调递减 函数y在上单调递增,在上单调递减解法二、(用复合函数的单调性):设: 则:对任意的,有,又是减函数 在是减函数对任意的,有,又是减函数 在是增函数引申:求函数的值域 ()例2设a是实数,试证明对于任意a,为增函数;分析:此题虽形式较为复杂,但应严格按照单调性、奇偶性的定义进行证明还应要求学生注意不同题型的解答方法(1)证明:设R,且则由于指数函数 y=在R上是增函数,且,所以即0得+10, +10所以
17、0时,将指数函数y=的图象向右平行移动m个单位长度,就得到函数y=的图象;当m1)的图像在直线x=1右侧的部分翻折到直线x=1左侧得到的图像,是关于直线x=1对称推广:对于有些复合函数的图象,则常用基本函数图象+变换方法作出:基本函数图象+变换:即把我们熟知的基本函数图象,通过平移、作其对称图等方法,得到我们所要求作的复合函数的图象,如上例,这种方法我们遇到的有以下几种形式:函 数y=f(x)y=f(x+a)a0时,向左平移a个单位;a0时,向上平移a个单位;a0时,向下平移|a|个单位.y=f(-x)y=f(-x)与y=f(x)的图象关于y轴对称.y=-f(x)y=-f(x)与y=f(x)的图象关于x轴对称.y=-f(-x)y=-f(-x)与y=f(x)的图象关于原点轴对称.y=f(|x|)y=f(|x|)的图象关于y轴对称,x0时函数即y=f(x),所以x0时的图象与x0时y=f(x)的图象关于y轴对称.y=|f(x)|,y=|f(x)|的图象是y=f(x)0与y=f(x)0图象的组合.yy=与y=f(x)的图象关于直线y=x对称.以上是在高一阶段我
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 山茶油订购合同协议书
- 道路共建协议书
- 邵昕离婚协议书
- 美伊退出协议书
- 酒店受伤协议书
- 酒店分成协议书
- 维护婚姻协议书
- 注册类人员引荐协议书
- 良田流转协议书
- 矿石交易协议书
- 初中 初一 心理健康 生活中的小确幸 课件
- 输液泵/微量注射泵使用技术操作考核评分标准
- 《微生物与免疫学》期末考试复习题及参考答案
- 梁若瑜著-十二宫六七二象书增注版
- 安全文明环保施工现场综合规划和详细措施
- 《第二单元 辽宋夏金元时期:民族关系发展和社会变化》单元梳理
- 外研版三年级英语下册全册教材分析解读
- 巴蜀文化(课堂PPT)课件
- 质量部组织架构
- 电气装置安装工程接地装置施工及验收规范——50169-2006
- 水电站自动化运行专业术语
评论
0/150
提交评论