下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2014-2015-1组合数学试卷(A)答案、填空题(每小题3分,共24分). (x + y)6所有项的系数和是(64 ).将5封信投入3个邮筒,有(243 )种不同的投法.在5M3棋盘中选取两个相邻的方格(即有一条公共边的两个方格),有 (22)种不同的选取方法.把9个相同的球放入 3个相同的盒,不允许空盒,则有(7 )种不同方式.把5个不同的球安排到 4个相同盒子中,无空盒,共有种(10 )不同方法. 一次宴会,5位来宾寄存他们的帽子,在取帽子的时候有(44 )种可能使得 TOC o 1-5 h z 没有一位来宾取回的是他自己的帽子.在边长为a的正方形中,任意给定九点,这些顶点的三角形中必
2、有一个三角形的面积不大于(a%).棋盘多项式 R( Eb )= ( x2 +3x+1)、单项选择题(每小题3分,共24分)9小+卜10B ),p+q1B、p + qrC、p+q、r十1r m m i n p q. 1 p + q +1、D、 .r J. (a +b +c +d)n的展开式在合并同类项后一共有(B )项. TOC o 1-5 h z HYPERLINK l bookmark16 o Current Document n+3- n-A、n ;B、;C、;D、n!.In).多项式(2x0+x1+4x2 +x3 )4中项x0 x2 x2的系数是( C ).A、 78 ;B、104 ;C
3、、 96 ;D、 48.有4个相同的红球,5个相同的白球,则这9个球有(B )种不同的排列方式A、 63 ;B、 126 ; C、252 ; D、 378.13.设x, y均为正整数且x + y M10 ,则这样的有序数对(x, y)共有(D )个.100 ;81 ;50 ;D. 45.组合数学试题(第 1页 共5页)14.递推关系an =4%3%n + 2n(n22)的特解形式是(B ) (s为待定常数)A、2n15.递推关系f(n) =6f(n-1)_9f (n2)的一般解是( B ) ( C1, C2为任意常数).16.17.A、G3n,+C23n; B、(C1 +C2 n)3数列an
4、= n的普通母函数是( D )A、11 -tB、C、解答题(每小题10分,共30分)C、G(1 + n)3n;D、C1 3nC 23n.-1(1-t)2D、t (1-t)2.2、3、4 (数字可重复使用)可组成多少个含奇数个1、偶数个2且至少含一个3的n位数(n 1 ).解:由指数母函数At =I1!3!12!1! 2!1! 2!4t 3t_te -e e:-1-1 4nn=0 4- 3n-1ntn!tn _,J的系数n!4n _3n +(-1 n即为所求.10分18.解递推关系:an =5an46an二十n +2,(n -2),a。27449 aT解:递推关系an-5an 1 - 6an 2
5、 n 一 2(1)的特征方程为2x -5x +6 = 0 ,特征根为=3.故其通解为4分)an =c1 2n c2 3n.因为(1)式无等于1的特征根,所以递推关系an =5anj -6an +n +2(n 2)(2)有特解an = An十B ,其中a和B是待定常数,代入(2)式得An B =5A(n -1) B - 6A(n - 2) B n 2组合数学试题(第 2页 共5页)化简得2An +2B _7A =n +2,所以an = C1 2C22A = 12B7A=2Jn 113 n ,248分)其中g,C2是待定常数由初始条件得1127c1 c2 二 HYPERLINK l bookmar
6、k60 o Current Document 44c c 1112 g 3c22449(10 分) TOC o 1-5 h z 111 .解之得 g =3,c2 =1.所以 an =3父2n +3n +-n + (n 2). , 2419.求1到1000之间不能被5、6或8整除的自然数的个数.解:设A为1至1000的整数中能被5整除的数的个数;B为1至1000的整数中能被 6整 除的数的个数;C 为1至1000的整数中能被 8整除的数的个数.则A =陪卜200, B =暗卜 166 C =噌=125, A。B =喈卜 33, _ 5_ 6_ 8_ 30.AC = l1000-l = 25, B
7、C = 110001iA”nc = 1100081 40! 24M20aUbUc = A 十 B + C AB AC - BC + Arl BC 所以= 200 166 125 -33 -25 -41 8 =40010分即所求为:1000 -400 =600.,四、证明题(每小题11分,共22分) TOC o 1-5 h z 20.设x0 :=0, xk :=x(x 1)(x k+1), k N , s(n, k), S(n,k)分别为第一、第二 nn类 Stirling 数,定义为:xn = s(n, k) xk , xn = S(n,k) xk .证明: k=0k=0(1)第二类 Stir
8、ling 数满足递推关系:S(n+1,k)=S(n,k1) + kS(n,k), n, k 1 ;n0, m = n(2)两类 Stirling 数满足关系:Z S(n, k) s(k, m)=,.kom1, m=n证明:(1)组合数学试题(第 3页 共5页) TOC o 1-5 h z nnnxn1 =xn x- S(n,k)xk(x-k) k =- S(n,k)xki 八 kS(n,k)xk k -0k=Ok=On 1nn=、 S(n,k1)xk 八 kS(n,k)xk -% n,k1) kS(n,k)lxkS(n,n)xnik 4m 4k 1n 1因为xn+ = S(n +1,k)xk,
9、所以比较两等式的xk的系数,即得递推关系: k OS(n+1,k)=S(n,k 1) + kS(n,k), n, k 之1.,6 分nk(2)因为 xn = S(n,k)xk, xk= s(k,m)xm,所以k Om 0nkn nxn =、, S(n,k)“ s(k,m)xm 、S(n, k)s(k,m) xmk =0m=0m=0k 矛比较两等式的xm的系数,即得:/0, m 二 n工 S(n,k)s(k,m) = 4.,11 分k#1, m = n21.考虑n个数a1,a2,,an的乘积aa2a3an ,依据乘法的结合律,不改变其顺序,只用括号表示成对的乘积.设pn为n个数乘积的n-1对括号
10、插入的不同方案数.(1)证明Pn的递推关系为:Pn = PPn+ P2Pn/ + PnP1, 52);(2)用母函数方法证明:Pn =- 2n -2 , (n之2).n n -1 J证明:(1) n个数a1, a2,an的乘积的最后一次乘法运算是前k个数的积与后n - k个数的积之间进行,其中k =1,2,n -1.前k个数可以有Pk种不同的方法加括号,而后 n-k 个数可以用p一种不同的方法加括号.这样,当k取遍1,2,n-什时,集所有可能性, 于是我们得到Pn = P1 Pn-1 + P2 Pnq + Pn 二 P1 , 5 2 2).,5 分n-1显然p1=p2=1 ,设G(x) = pnxn,由递推公式pn=Epk pn_k,n之2.有n 1k=1组合数学试题(第 4页共5页) TOC o 1-5 h z 二二二二二二nn:nG(x)=PnXn=X+PnXn=X+ PkPn&Xn= X+PkPn+Xnn 1n-2n=2k4n4k 400 8oooO= X+ Pk Pn*4Xn* =x+ PkXkZ PnXn=X + G2(X)k 4 n zkkJnJ-2 _1 二 J - 4x二G(x)2 -G(x) +x = 0,解得 G(x)=.2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 林副产品购销合同
- 施工工程进度保证信
- 践行社会主义核心价值观
- 房屋租赁合同范本完整
- 农业技术产品售后服务协议
- 挂靠合作协议简单
- 沙石运输质量协议书
- 钢筋批发购买
- 代收货款合同书
- 房屋买卖合同的签订与法律纠纷处理
- 煤化工未来发展趋势报告
- 【大单元教学】Unit 8 单元整体教学设计
- 天津市部分重点中学高一上学期期末考试数学试卷及答案(共四套)
- 镇江市2023-2024学年九年级上学期期末英语试卷(含答案解析)
- 建筑施工合同管理培训
- GJB9001C内部审核检查表
- 河北省安全生产风险管控与隐患治理规课件
- 气管切开非机械通气病人气道护理课件
- 机关档案管理工作培训课件
- 《卫星通信系统》课件
- 电动自行车火灾事故教训警示课件
评论
0/150
提交评论