浙江省宁波市市级名校2022年中考冲刺卷数学试题含解析_第1页
浙江省宁波市市级名校2022年中考冲刺卷数学试题含解析_第2页
浙江省宁波市市级名校2022年中考冲刺卷数学试题含解析_第3页
浙江省宁波市市级名校2022年中考冲刺卷数学试题含解析_第4页
浙江省宁波市市级名校2022年中考冲刺卷数学试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022中考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1衡阳市某生态示范园计划种植一批梨树,原计划总产值30万千克,为了满足市场需求,现决定改良梨树品种,改良后平均每亩产量是原来的1.5倍,总产量比原计划增加了6万千克,种植亩数减少了10亩,则原来平均每亩产量是多少万千克?设原来平

2、均每亩产量为万千克,根据题意,列方程为ABCD2-5的相反数是( )A5BCD3如图,二次函数y=ax2+bx+c(a0)的图象与x轴的正半轴相交于A,B两点,与y轴相交于点C,对称轴为直线x=2,且OA=OC有下列结论:abc0;3b+4c0;c1;关于x的方程ax2+bx+c=0有一个根为,其中正确的结论个数是()A1B2C3D44小明将某圆锥形的冰淇淋纸套沿它的一条母线展开若不考虑接缝,它是一个半径为12cm,圆心角为的扇形,则A圆锥形冰淇淋纸套的底面半径为4cmB圆锥形冰淇淋纸套的底面半径为6cmC圆锥形冰淇淋纸套的高为D圆锥形冰淇淋纸套的高为5在一次中学生田径运动会上,参加男子跳高的

3、15名运动员的成绩如下表所示:成绩人数232341则这些运动员成绩的中位数、众数分别为A、B、C、D、6下列计算中,错误的是( )A;B;C;D7下列运算正确的是()ABCD8甲队修路120 m与乙队修路100 m所用天数相同,已知甲队比乙队每天多修10 m,设甲队每天修路xm.依题意,下面所列方程正确的是A B C D9如图,已知OP平分AOB,AOB60,CP2,CPOA,PDOA于点D,PEOB于点E如果点M是OP的中点,则DM的长是()A2BCD210在,,则的值为( )ABCD二、填空题(共7小题,每小题3分,满分21分)11一个不透明口袋里装有形状、大小都相同的2个红球和4个黑球,

4、从中任意摸出一个球恰好是红球的概率是_12如图,已知双曲线经过直角三角形OAB斜边OA的中点D,且与直角边AB相交于点C若点A的坐标为(-6,4),则AOC的面积为 13若反比例函数y的图象经过点A(m,3),则m的值是_14如图, AB是O的弦,OAB=30OCOA,交AB于点C,若OC=6,则AB的长等于_15已知甲、乙两组数据的折线图如图,设甲、乙两组数据的方差分别为S甲2、S乙2,则S甲2_S乙2(填“”、“=”、“”)16如图,矩形OABC的边OA,OC分别在x轴,y轴上,点B在第一象限,点D在边BC上,且AOD30,四边形OABD与四边形OABD关于直线OD对称(点A和A,点B和B

5、分别对应)若AB2,反比例函数y(k0)的图象恰好经过A,B,则k的值为_17不等式组的最大整数解是_.三、解答题(共7小题,满分69分)18(10分)已知抛物线y=x2+bx+c经过点A(0,6),点B(1,3),直线l1:y=kx(k0),直线l2:y=-x-2,直线l1经过抛物线y=x2+bx+c的顶点P,且l1与l2相交于点C,直线l2与x轴、y轴分别交于点D、E.若把抛物线上下平移,使抛物线的顶点在直线l2上(此时抛物线的顶点记为M),再把抛物线左右平移,使抛物线的顶点在直线l1上(此时抛物线的顶点记为N)(1)求抛物y=x2+bx+c线的解析式(2)判断以点N为圆心,半径长为4的圆

6、与直线l2的位置关系,并说明理由(3)设点F、H在直线l1上(点H在点F的下方),当MHF与OAB相似时,求点F、H的坐标(直接写出结果)19(5分)如图,在平面直角坐标系中,OAOB,ABx轴于点C,点A(,1)在反比例函数y的图象上(1)求反比例函数y的表达式;(2)在x轴上是否存在一点P,使得SAOPSAOB,若存在,求所有符合条件点P的坐标;若不存在,简述你的理由20(8分)已知关于的一元二次方程 (为实数且)求证:此方程总有两个实数根;如果此方程的两个实数根都是整数,求正整数的值21(10分)如图,AB是O的直径,C、D为O上两点,且,过点O作OEAC于点EO的切线AF交OE的延长线

7、于点F,弦AC、BD的延长线交于点G.(1)求证:FB;(2)若AB12,BG10,求AF的长.22(10分)如图1,点P是平面直角坐标系中第二象限内的一点,过点P作PAy轴于点A,点P绕点A顺时针旋转60得到点P,我们称点P是点P的“旋转对应点”(1)若点P(4,2),则点P的“旋转对应点”P的坐标为 ;若点P的“旋转对应点”P的坐标为(5,16)则点P的坐标为 ;若点P(a,b),则点P的“旋转对应点”P的坐标为 ;(2)如图2,点Q是线段AP上的一点(不与A、P重合),点Q的“旋转对应点”是点Q,连接PP、QQ,求证:PPQQ;(3)点P与它的“旋转对应点”P的连线所在的直线经过点(,6

8、),求直线PP与x轴的交点坐标23(12分)在汕头市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,电子白板的价格是电脑的3倍,购买5台电脑和10台电子白板需要17.5万元,求每台电脑、每台电子白板各多少万元?24(14分)我们知道,平面内互相垂直且有公共原点的两条数轴构成平面直角坐标系,如果两条数轴不垂直,而是相交成任意的角(0180且90),那么这两条数轴构成的是平面斜坐标系,两条数轴称为斜坐标系的坐标轴,公共原点称为斜坐标系的原点,如图1,经过平面内一点P作坐标轴的平行线PM和PN,分别交x轴和y轴于点M,N点M、N在x轴和y轴上所对应的数分别叫做P点的x坐标

9、和y坐标,有序实数对(x,y)称为点P的斜坐标,记为P(x,y)(1)如图2,45,矩形OABC中的一边OA在x轴上,BC与y轴交于点D,OA2,OCl点A、B、C在此斜坐标系内的坐标分别为A ,B ,C 设点P(x,y)在经过O、B两点的直线上,则y与x之间满足的关系为 设点Q(x,y)在经过A、D两点的直线上,则y与x之间满足的关系为 (2)若120,O为坐标原点如图3,圆M与y轴相切原点O,被x轴截得的弦长OA4 ,求圆M的半径及圆心M的斜坐标如图4,圆M的圆心斜坐标为M(2,2),若圆上恰有两个点到y轴的距离为1,则圆M的半径r的取值范围是 参考答案一、选择题(每小题只有一个正确答案,

10、每小题3分,满分30分)1、A【解析】根据题意可得等量关系:原计划种植的亩数改良后种植的亩数亩,根据等量关系列出方程即可【详解】设原计划每亩平均产量万千克,则改良后平均每亩产量为万千克,根据题意列方程为:故选:【点睛】本题考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系2、A【解析】由相反数的定义:“只有符号不同的两个数互为相反数”可知-5的相反数是5.故选A.3、B【解析】由二次函数图象的开口方向、对称轴及与y轴的交点可分别判断出a、b、c的符号,从而可判断;由对称轴=2可知a=,由图象可知当x=1时,y0,可判断;由OA=OC,且OA1,可判断;把-代入方程整理可得

11、ac2-bc+c=0,结合可判断;从而可得出答案【详解】解:图象开口向下,a0,对称轴为直线x=2,0,b0,与y轴的交点在x轴的下方,c0,abc0,故错误.对称轴为直线x=2,=2,a=,由图象可知当x=1时,y0,a+b+c0,4a+4b+4c0,4()+4b+4c0,3b+4c0,故错误.由图象可知OA1,且OA=OC,OC1,即-c1,c-1,故正确.假设方程的一个根为x=-,把x=-代入方程可得+c=0,整理可得ac-b+1=0,两边同时乘c可得ac2-bc+c=0,方程有一个根为x=-c,由可知-c=OA,而当x=OA是方程的根,x=-c是方程的根,即假设成立,故正确.综上可知正

12、确的结论有三个:.故选B.【点睛】本题主要考查二次函数的图象和性质熟练掌握图象与系数的关系以及二次函数与方程、不等式的关系是解题的关键特别是利用好题目中的OA=OC,是解题的关键.4、C【解析】根据圆锥的底面周长等于侧面展开图的扇形弧长,列出方程求出圆锥的底面半径,再利用勾股定理求出圆锥的高【详解】解:半径为12cm,圆心角为的扇形弧长是:,设圆锥的底面半径是rcm,则,解得:即这个圆锥形冰淇淋纸套的底面半径是2cm圆锥形冰淇淋纸套的高为故选:C【点睛】本题综合考查有关扇形和圆锥的相关计算解题思路:解决此类问题时要紧紧抓住两者之间的两个对应关系:圆锥的母线长等于侧面展开图的扇形半径;圆锥的底面

13、周长等于侧面展开图的扇形弧长正确对这两个关系的记忆是解题的关键5、C【解析】根据中位数和众数的概念进行求解【详解】解:将数据从小到大排列为:1.50,150,1.60,1.60,160,1.65,1.65, 1.1,1.1,1.1,1.75,1.75,1.75,1.75,1.80众数为:1.75;中位数为:1.1故选C【点睛】本题考查1.中位数;2.众数,理解概念是解题关键6、B【解析】分析:根据零指数幂、有理数的乘方、分数指数幂及负整数指数幂的意义作答即可详解:A,故A正确; B,故B错误; C故C正确; D,故D正确; 故选B点睛:本题考查了零指数幂、有理数的乘方、分数指数幂及负整数指数幂

14、的意义,需熟练掌握且区分清楚,才不容易出错7、D【解析】由去括号法则:如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反;完全平方公式:(ab)2=a22ab+b2;单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式进行计算即可【详解】解:A、a-(b+c)=a-b-ca-b+c,故原题计算错误;B、(x+1)2=x2+2x+1x+1,故原题计算错误;C、(-a)3=,故原题计算错误;D、2a23a3=6a5,故原题计算正确;故选:D【点睛】本题考查了整式的乘法,解题的关键是掌握有关计算法则8、A【解析】分析:甲队

15、每天修路xm,则乙队每天修(x10)m,因为甲、乙两队所用的天数相同,所以,。故选A。9、C【解析】由OP平分AOB,AOB=60,CP=2,CPOA,易得OCP是等腰三角形,COP=30,又由含30角的直角三角形的性质,即可求得PE的值,继而求得OP的长,然后由直角三角形斜边上的中线等于斜边的一半,即可求得DM的长【详解】解:OP平分AOB,AOB=60,AOP=COP=30,CPOA,AOP=CPO,COP=CPO,OC=CP=2,PCE=AOB=60,PEOB,CPE=30,CE=CP=1,PE=,OP=2PE=2,PDOA,点M是OP的中点,DM=OP=故选C考点:角平分线的性质;含3

16、0度角的直角三角形;直角三角形斜边上的中线;勾股定理10、A【解析】本题可以利用锐角三角函数的定义求解即可【详解】解:tanA=,AC=2BC,tanA=故选:A【点睛】本题考查了正切函数的概念,掌握直角三角形中角的对边与邻边的比是关键 二、填空题(共7小题,每小题3分,满分21分)11、.【解析】根据随机事件概率大小的求法,找准两点:符合条件的情况数目;全部情况的总数二者的比值就是其发生的概率的大小【详解】一个不透明口袋里装有形状、大小都相同的2个红球和4个黑球,从中任意摸出一个球恰好是红球的概率为: ,故答案为【点睛】本题考查了概率公式的应用注意概率所求情况数与总情况数之比12、2【解析】

17、解:OA的中点是D,点A的坐标为(6,4),D(1,2),双曲线y=经过点D,k=12=6,BOC的面积=|k|=1又AOB的面积=64=12,AOC的面积=AOB的面积BOC的面积=121=213、2【解析】反比例函数的图象过点A(m,3),解得.14、18【解析】连接OB,OA=OB,B=A=30,COA=90,AC=2OC=26=12,ACO=60,ACO=B+BOC,BOC=ACO-B=30,BOC=B,CB=OC=6,AB=AC+BC=18,故答案为18.15、【解析】要比较甲、乙方差的大小,就需要求出甲、乙的方差;首先根据折线统计图结合根据平均数的计算公式求出这两组数据的平均数;接

18、下来根据方差的公式求出甲、乙两个样本的方差,然后比较即可解答题目.【详解】甲组的平均数为:=4,S甲2=(3-4)2+(6-4)2+(2-4)2+(6-4)2+(4-4)2+(3-4)2=,乙组的平均数为: =4,S乙2=(4-4)2+(3-4)2+(5-4)2+(3-4)2+(4-4)2+(5-4)2=,S甲2S乙2.故答案为:.【点睛】本题考查的知识点是方差,算术平均数,折线统计图,解题的关键是熟练的掌握方差,算术平均数,折线统计图.16、【解析】解:四边形ABCO是矩形,AB=1,设B(m,1),OA=BC=m,四边形OABD与四边形OABD关于直线OD对称,OA=OA=m,AOD=AO

19、D=30AOA=60,过A作AEOA于E,OE=m,AE=m,A(m,m),反比例函数(k0)的图象恰好经过点A,B, mm=m,m=,k=故答案为17、【解析】先求出每个不等式的解集,再确定其公共解,得到不等式组的解集,然后求其整数解【详解】解:,由不等式得x1,由不等式得x-1,其解集是-1x1,所以整数解为0,1,1,则该不等式组的最大整数解是x=1故答案为:1【点睛】考查不等式组的解法及整数解的确定求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了三、解答题(共7小题,满分69分)18、(1);(2)以点为圆心,半径长为4的圆与直线相离;理由见解析

20、;(3)点、的坐标分别为、或、或、.【解析】(1)分别把A,B点坐标带入函数解析式可求得b,c即可得到二次函数解析式(2)先求出顶点的坐标,得到直线解析式,再分别求得MN的坐标,再求出NC比较其与4的大小可得圆与直线的位置关系.(3)由题得出tanBAO=,分情况讨论求得F,H坐标.【详解】(1)把点、代入得, 解得, 抛物线的解析式为. (2)由得,顶点的坐标为, 把代入得解得,直线解析式为,设点,代入得,得,设点,代入得,得,由于直线与轴、轴分别交于点、易得、,,点在直线上,即, , 以点为圆心,半径长为4的圆与直线相离. (3)点、的坐标分别为、或、或、.C(-1,-1),A(0,6),

21、B(1,3)可得tanBAO=,情况1:tanCF1M= = , CF1=9,M F1=6,H1F1=5, F1(8,8),H1(3,3);情况2:F2(-5,-5), H2(-10,-10)(与情况1关于L2对称);情况3:F3(8,8), H3(-10,-10)(此时F3与F1重合,H3与H2重合).【点睛】本题考查的知识点是二次函数综合题,解题的关键是熟练的掌握二次函数综合题.19、(1)y;(1)(1,0)或(1,0)【解析】(1)把A的坐标代入反比例函数的表达式,即可求出答案;(1)求出A60,B30,求出线段OA和OB,求出AOB的面积,根据已知SAOPSAOB,求出OP长,即可求

22、出答案【详解】(1)把A(,1)代入反比例函数y得:k1,所以反比例函数的表达式为y;(1)A(,1),OAAB,ABx轴于C,OC,AC1,OA1tanA,A60OAOB,AOB90,B30,OB1OC1,SAOBOAOB11SAOPSAOB,OPACAC1,OP1,点P的坐标为(1,0)或(1,0)【点睛】本题考查了用待定系数法求反比例函数的解析式,三角形的面积,解直角三角形等知识点,求出反比例函数的解析式和求出AOB的面积是解答此题的关键20、 (1)证明见解析;(2)或 【解析】(1)求出的值,再判断出其符号即可;(2)先求出x的值,再由方程的两个实数根都是整数,且m是正整数求出m的值

23、即可【详解】(1)依题意,得 , ,方程总有两个实数根 (2), , 方程的两个实数根都是整数,且是正整数,或或【点睛】本题考查的是根的判别式,熟知一元二次方程ax2+bx+c=0(a0)的根与=b2-4ac的关系是解答此题的关键21、(1)见解析;(2).【解析】(1)根据圆周角定理得到GABB,根据切线的性质得到GAB+GAF90,证明FGAB,等量代换即可证明;(2)连接OG,根据勾股定理求出OG,证明FAOBOG,根据相似三角形的性质列出比例式,计算即可.【详解】(1)证明:,.GABB,AF是O的切线,AFAO.GAB+GAF90.OEAC,F+GAF90.FGAB,FB;(2)解:

24、连接OG.GABB,AGBG.OAOB6,OGAB.,FAOBOG90,FB,FAOBOG,.【点睛】本题考查的是切线的性质、相似三角形的判定和性质,掌握圆的切线垂直于经过切点的半径是解题的关键.22、(1)(2,2+2),(10,165),(,ba);(2)见解析;(3)直线PP与x轴的交点坐标(,0)【解析】(1)当P(-4,2)时,OA=2,PA=4,由旋转知,PAH=30,进而PH=PA=2,AH=PH=2,即可得出结论;当P(-5,16)时,确定出PA=10,AH=5,由旋转知,PA=PA=10,OA=OH-AH=16-5,即可得出结论;当P(a,b)时,同的方法得,即可得出结论;(

25、2)先判断出BQQ=60,进而得出PAP=PPA=60,即可得出PQQ=PAP=60,即可得出结论;(3)先确定出yPP=x+3,即可得出结论【详解】解:(1)如图1,当P(4,2)时,PAy轴,PAH=90,OA=2,PA=4,由旋转知,PA=4,PAP=60,PAH=30,在RtPAH中,PH=PA=2,AH=PH=2,OH=OA+AH=2+2,P(2,2+2),当P(5,16)时,在RtPAH中,PAH=30,PH=5,PA=10,AH=5,由旋转知,PA=PA=10,OA=OHAH=165,P(10,165),当P(a,b)时,同的方法得,P(,ba),故答案为:(2,2+2),(10

26、,165),(,ba);(2)如图2,过点Q作QBy轴于B,BQQ=60,由题意知,PAP是等边三角形,PAP=PPA=60,QBy轴,PAy轴,QBPA,PQQ=PAP=60,PQQ=60=PPA,PPQQ;(3)设yPP=kx+b,由题意知,k=,直线经过点(,6),b=3,yPP=x+3,令y=0,x=,直线PP与x轴的交点坐标(,0)【点睛】此题是几何变换综合题,主要考查了含30度角的直角三角形的性质,旋转的性质,等边三角形的判定和性质,待定系数法,解本题的关键是理解新定义23、每台电脑0.5万元;每台电子白板1.5万元【解析】先设每台电脑x万元,每台电子白板y万元,根据电子白板的价格是电脑的3倍,购买5台电脑和10台电子白板需要17.5万元列出方程组,求出x,y的值即可.【详解】设每台电脑x万元,每台电子白板y万元根据题意,得: 解

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论