




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡
2、一并交回。一、选择题(共10小题,每小题3分,共30分)1如图,为了测量河对岸l1上两棵古树A、B之间的距离,某数学兴趣小组在河这边沿着与AB平行的直线l2上取C、D两点,测得ACB15,ACD45,若l1、l2之间的距离为50m,则A、B之间的距离为()A50mB25mC(50)mD(5025)m2计算1+2+22+23+22010的结果是( )A220111B22011+1CD3下列计算正确的是()A()28B+6C()00D(x2y)34在O中,已知半径为5,弦AB的长为8,则圆心O到AB的距离为()A3B4C5D65在刚过去的2017年,我国整体经济实力跃上了一个新台阶,城镇新增就业1
3、351万人,数据“1351万”用科学记数法表示为( )A13.51106B1.351107C1.351106D0.15311086某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片,如果全班有x名同学,根据题意,列出方程为( )Ax(x+1)=1035Bx(x-1)=1035Cx(x+1)=1035Dx(x-1)=10357根据天津市北大港湿地自然保护总体规划(20172025),2018年将建立养殖业退出补偿机制,生态补水78000000m1将78000000用科学记数法表示应为()A780105 B78106 C7.8107 D0.781088最小的正整数是
4、()A0 B1 C1 D不存在9魏晋时期的数学家刘徽首创割圆术为计算圆周率建立了严密的理论和完善的算法作圆内接正多边形,当正多边形的边数不断增加时,其周长就无限接近圆的周长,进而可用来求得较为精确的圆周率祖冲之在刘徽的基础上继续努力,当正多边形的边数增加24576时,得到了精确到小数点后七位的圆周率,这一成就在当时是领先其他国家一千多年,如图,依据“割圆术”,由圆内接正六边形算得的圆周率的近似值是()A0.5B1C3D10已知一元二次方程1(x3)(x+2)=0,有两个实数根x1和x2(x1x2),则下列判断正确的是( )A2x1x23Bx123x2C2x13x2Dx12x23二、填空题(本大
5、题共6个小题,每小题3分,共18分)11在平面直角坐标系中,点A,B的坐标分别为(m,7),(3m1,7),若线段AB与直线y2x1相交,则m的取值范围为_12圆锥的底面半径是4cm,母线长是5cm,则圆锥的侧面积等于_cm113已知线段a=4,b=1,如果线段c是线段a、b的比例中项,那么c=_14如果点A(1,4)、B(m,4)在抛物线ya(x1)2+h上,那么m的值为_15如图,直线交于点,与轴负半轴,轴正半轴分别交于点,的延长线相交于点,则的值是_16如图,在平面直角坐标系中,将ABO绕点A顺时针旋转到AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将AB1C1绕点
6、B1顺时针旋转到A1B1C2的位置,点C2在x轴上,将A1B1C2绕点C2顺时针旋转到A2B2C2的位置,点A2在x轴上,依次进行下去若点A(,0),B(0,4),则点B4的坐标为_,点B2017的坐标为_三、解答题(共8题,共72分)17(8分)P是O内一点,过点P作O的任意一条弦AB,我们把PAPB的值称为点P关于O的“幂值”(1)O的半径为6,OP=1 如图1,若点P恰为弦AB的中点,则点P关于O的“幂值”为_;判断当弦AB的位置改变时,点P关于O的“幂值”是否为定值,若是定值,证明你的结论;若不是定值,求点P关于0的“幂值”的取值范围; (2)若O的半径为r,OP=d,请参考(1)的思
7、路,用含r、d的式子表示点P关于O的“幂值”或“幂值”的取值范围_; (3)在平面直角坐标系xOy中,C(1,0),C的半径为3,若在直线y=x+b上存在点P,使得点P关于C的“幂值”为6,请直接写出b的取值范围_18(8分)如图,正方形ABCD中,BD为对角线(1)尺规作图:作CD边的垂直平分线EF,交CD于点E,交BD于点F(保留作图痕迹,不要求写作法);(2)在(1)的条件下,若AB=4,求DEF的周长19(8分)如图,ABD是O的内接三角形,E是弦BD的中点,点C是O外一点且DBCA,连接OE延长与圆相交于点F,与BC相交于点C求证:BC是O的切线;若O的半径为6,BC8,求弦BD的长
8、20(8分)某校开展“我最喜爱的一项体育活动”调查,要求每名学生必选且只能选一项,现随机抽查了m名学生,并将其结果绘制成如下不完整的条形图和扇形图请结合以上信息解答下列问题:(1)m= ;(2)请补全上面的条形统计图;(3)在图2中,“乒乓球”所对应扇形的圆心角的度数为 ;(4)已知该校共有1200名学生,请你估计该校约有 名学生最喜爱足球活动21(8分)如图,已知:AD 和 BC 相交于点 O,A=C,AO=2,BO=4,OC=3,求 OD 的长22(10分)解方程:=123(12分)已知关于x的一元二次方程(a+c)x2+2bx+(ac)=0,其中a、b、c分别为ABC三边的长如果x=1是
9、方程的根,试判断ABC的形状,并说明理由;如果方程有两个相等的实数根,试判断ABC的形状,并说明理由;如果ABC是等边三角形,试求这个一元二次方程的根24如图,菱形ABCD的边长为20cm,ABC120,对角线AC,BD相交于点O,动点P从点A出发,以4cm/s的速度,沿AB的路线向点B运动;过点P作PQBD,与AC相交于点Q,设运动时间为t秒,0t1(1)设四边形PQCB的面积为S,求S与t的关系式;(2)若点Q关于O的对称点为M,过点P且垂直于AB的直线l交菱形ABCD的边AD(或CD)于点N,当t为何值时,点P、M、N在一直线上?(3)直线PN与AC相交于H点,连接PM,NM,是否存在某
10、一时刻t,使得直线PN平分四边形APMN的面积?若存在,求出t的值;若不存在,请说明理由参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】如图,过点A作AMDC于点M,过点B作BNDC于点N则AM=BN通过解直角ACM和BCN分别求得CM、CN的长度,则易得AB =MN=CMCN,即可得到结论【详解】如图,过点A作AMDC于点M,过点B作BNDC于点N则AB=MN,AM=BN在直角ACM中,ACM=45,AM=50m,CM=AM=50m在直角BCN中,BCN=ACB+ACD=60,BN=50m,CN=(m),MN=CMCN=50(m)则AB=MN=(50)m故选C【点睛】本题
11、考查了解直角三角形的应用解决此问题的关键在于正确理解题意的基础上建立数学模型,把实际问题转化为数学问题2、A【解析】可设其和为S,则2S=2+22+23+24+22010+22011,两式相减可得答案.【详解】设S=1+2+22+23+22010则2S=2+22+23+22010+22011-得S=22011-1故选A.【点睛】本题考查了因式分解的应用;设出和为S,并求出2S进行做差求解是解题关键3、D【解析】各项中每项计算得到结果,即可作出判断【详解】解:A原式=8,错误;B原式=2+4,错误;C原式=1,错误;D原式=x6y3= ,正确故选D【点睛】此题考查了实数的运算,熟练掌握运算法则是
12、解本题的关键4、A【解析】解:作OCAB于C,连结OA,如图OCAB,AC=BC=AB=8=1在RtAOC中,OA=5,OC=,即圆心O到AB的距离为2故选A5、B【解析】根据科学记数法进行解答.【详解】1315万即13510000,用科学记数法表示为1.351107.故选择B.【点睛】本题主要考查科学记数法,科学记数法表示数的标准形式是a10n(1a10且n为整数).6、B【解析】试题分析:如果全班有x名同学,那么每名同学要送出(x-1)张,共有x名学生,那么总共送的张数应该是x(x-1)张,即可列出方程全班有x名同学,每名同学要送出(x-1)张;又是互送照片,总共送的张数应该是x(x-1)
13、=1故选B考点:由实际问题抽象出一元二次方程7、C【解析】科学记数法记数时,主要是准确把握标准形式a10n即可.【详解】解:78000000= 7.8107.故选C.【点睛】科学记数法的形式是a10n,其中1a10,n是整数,若这个数是大于10的数,则n比这个数的整数位数少1.8、B【解析】根据最小的正整数是1解答即可【详解】最小的正整数是1故选B【点睛】本题考查了有理数的认识,关键是根据最小的正整数是1解答9、C【解析】连接OC、OD,根据正六边形的性质得到COD60,得到COD是等边三角形,得到OCCD,根据题意计算即可【详解】连接OC、OD,六边形ABCDEF是正六边形,COD60,又O
14、COD,COD是等边三角形,OCCD,正六边形的周长:圆的直径6CD:2CD3,故选:C【点睛】本题考查的是正多边形和圆,掌握正多边形的中心角的计算公式是解题的关键10、B【解析】设y=-(x3)(x+2),y1=1(x3)(x+2)根据二次函数的图像性质可知y1=1(x3)(x+2)的图像可看做y=-(x3)(x+2)的图像向上平移1个单位长度,根据图像的开口方向即可得出答案.【详解】设y=-(x3)(x+2),y1=1(x3)(x+2)y=0时,x=-2或x=3,y=-(x3)(x+2)的图像与x轴的交点为(-2,0)(3,0),1(x3)(x+2)=0,y1=1(x3)(x+2)的图像可
15、看做y=-(x3)(x+2)的图像向上平移1,与x轴的交点的横坐标为x1、x2,-10,两个抛物线的开口向下,x123x2,故选B.【点睛】本题考查二次函数图像性质及平移的特点,根据开口方向确定函数的增减性是解题关键.二、填空题(本大题共6个小题,每小题3分,共18分)11、4m1【解析】先求出直线y7与直线y2x1的交点为(4,7),再分类讨论:当点B在点A的右侧,则m43m1,当点B在点A的左侧,则3m14m,然后分别解关于m的不等式组即可【详解】解:当y7时,2x17,解得x4,所以直线y7与直线y2x1的交点为(4,7),当点B在点A的右侧,则m43m1,无解;当点B在点A的左侧,则3
16、m14m,解得4m1,所以m的取值范围为4m1,故答案为4m1【点睛】本题考查了一次函数图象上点的坐标特征,根据直线y2x1与线段AB有公共点找出关于m的一元一次不等式组是解题的关键12、10【解析】解:根据圆锥的侧面积公式可得这个圆锥的侧面积=145=10(cm1)故答案为:10【点睛】本题考查圆锥的计算13、1【解析】根据比例中项的定义,列出比例式即可得出中项,注意线段不能为负【详解】根据比例中项的概念结合比例的基本性质,得:比例中项的平方等于两条线段的乘积则c1=41,c=1,(线段是正数,负值舍去),故c=1故答案为1【点睛】本题考查了比例线段;理解比例中项的概念,这里注意线段不能是负
17、数14、1【解析】根据函数值相等两点关于对称轴对称,可得答案【详解】由点A(1,4)、B(m,4)在抛物线y=a(x1)2+h上,得:(1,4)与(m,4)关于对称轴x=1对称,m1=1(1),解得:m=1故答案为:1【点睛】本题考查了二次函数图象上点的坐标特征,利用函数值相等两点关于对称轴对称得出m1=1(1)是解题的关键15、【解析】连接,根据可得,并且根据圆的半径相等可得OAD、OBE都是等腰三角形,由三角形的内角和,可得C=45,则有是等腰直角三角形,可得 即可求求解【详解】解:如图示,连接,是直径,是等腰直角三角形,【点睛】本题考查圆的性质和直角三角形的性质,能够根据圆性质得出是等腰
18、直角三角形是解题的关键16、(20,4) (10086,0) 【解析】首先利用勾股定理得出AB的长,进而得出三角形的周长,进而求出B2,B4的横坐标,进而得出变化规律,即可得出答案【详解】解:由题意可得:AO=,BO=4,AB=,OA+AB1+B1C2=+4=6+4=10,B2的横坐标为:10,B4的横坐标为:210=20,B2016的横坐标为:10=1B2C2=B4C4=OB=4,点B4的坐标为(20,4),B2017的横坐标为1+=10086,纵坐标为0,点B2017的坐标为:(10086,0)故答案为(20,4)、(10086,0)【点睛】本题主要考查了点的坐标以及图形变化类,根据题意得
19、出B点横坐标变化规律是解题的关键三、解答题(共8题,共72分)17、(1)20;当弦AB的位置改变时,点P关于O的“幂值”为定值,证明见解析;(2)点P关于O的“幂值”为r2d2;(3)3b.【解析】【详解】(1)如图1所示:连接OA、OB、OP由等腰三角形的三线合一的性质得到PBO为直角三角形,然后依据勾股定理可求得PB的长,然后依据幂值的定义求解即可;过点P作O的弦ABOP,连接AA、BB先证明APABPB,依据相似三角形的性质得到PAPB=PAPB从而得出结论;(2)连接OP、过点P作ABOP,交圆O与A、B两点由等腰三角形三线合一的性质可知AP=PB,然后在RtAPO中,依据勾股定理可
20、知AP2=OA2-OP2,然后将d、r代入可得到问题的答案;(3)过点C作CPAB,先求得OP的解析式,然后由直线AB和OP的解析式,得到点P的坐标,然后由题意圆的幂值为6,半径为1可求得d的值,再结合两点间的距离公式可得到关于b的方程,从而可求得b的极值,据此即可确定出b的取值范围【详解】(1)如图1所示:连接OA、OB、OP,OA=OB,P为AB的中点,OPAB,在PBO中,由勾股定理得:PB=2,PA=PB=2,O的“幂值”=22=20,故答案为:20;当弦AB的位置改变时,点P关于O的“幂值”为定值,证明如下:如图,AB为O中过点P的任意一条弦,且不与OP垂直,过点P作O的弦ABOP,
21、连接AA、BB,在O中,AAP=BBP,APA=BPB,APABPB,PAPB=PAPB=20,当弦AB的位置改变时,点P关于O的“幂值”为定值;(2)如图3所示;连接OP、过点P作ABOP,交圆O与A、B两点,AO=OB,POAB,AP=PB,点P关于O的“幂值”=APPB=PA2,在RtAPO中,AP2=OA2OP2=r2d2,关于O的“幂值”=r2d2,故答案为:点P关于O的“幂值”为r2d2;(3)如图1所示:过点C作CPAB,CPAB,AB的解析式为y=x+b,直线CP的解析式为y=x+联立AB与CP,得,点P的坐标为(b,+b),点P关于C的“幂值”为6,r2d2=6,d2=3,即
22、(b)2+(+b)2=3,整理得:b2+2b9=0,解得b=3或b=,b的取值范围是3b,故答案为:3b.【点睛】本题综合性质较强,考查了新定义题,解答过程中涉及到了幂值的定义、勾股定理、等腰三角形的性质、相似三角形的性质和判定、一次函数的交点问题、两点间的距离公式等,依据两点间的距离公式列出关于b的方程,从而求得b的极值是解题的关键18、(1)见解析;(2)2+1【解析】分析:(1)、根据中垂线的做法作出图形,得出答案;(2)、根据中垂线和正方形的性质得出DF、DE和EF的长度,从而得出答案详解:(1)如图,EF为所作;(2)解:四边形ABCD是正方形,BDC=15,CD=BC=1,又EF垂
23、直平分CD,DEF=90,EDF=EFD=15, DE=EF=CD=2,DF=DE=2,DEF的周长=DF+DE+EF=2+1点睛:本题主要考查的是中垂线的性质,属于基础题型理解中垂线的性质是解题的关键19、(1)详见解析;(2)BD=9.6.【解析】试题分析:(1)连接OB,由垂径定理可得BE=DE,OEBD, ,再由圆周角定理可得 ,从而得到 OBE DBC90,即 ,命题得证.(2)由勾股定理求出OC,再由OBC的面积求出BE,即可得出弦BD的长.试题解析:(1)证明:如下图所示,连接OB. E是弦BD的中点, BEDE,OE BD, BOE A, OBE BOE90. DBC A, B
24、OE DBC, OBE DBC90, OBC90,即BCOB, BC是 O的切线(2)解: OB6,BC8,BCOB, , , ,.点睛:本题主要考查圆中的计算问题,解题的关键在于清楚角度的转换方式和弦长的计算方法.20、(1)150,(2)36,(3)1【解析】(1)根据图中信息列式计算即可;(2)求得“足球“的人数=15020%=30人,补全上面的条形统计图即可;(3)360乒乓球”所占的百分比即可得到结论;(4)根据题意计算即可【详解】(1)m=2114%=150,(2)“足球“的人数=15020%=30人,补全上面的条形统计图如图所示;(3)在图2中,“乒乓球”所对应扇形的圆心角的度数
25、为360=36;(4)120020%=1人,答:估计该校约有1名学生最喜爱足球活动故答案为150,36,1【点睛】本题考查了条形统计图,观察条形统计图、扇形统计图获得有效信息是解题关键21、OD=6.【解析】(1)根据有两个角相等的三角形相似,直接列出比例式,求出OD的长,即可解决问题【详解】在AOB与COD中,AOBCOD,OD=6.【点睛】该题主要考查了相似三角形的判定及其性质的应用问题;解题的关键是准确找出图形中的对应元素,正确列出比例式;对分析问题解决问题的能力提出了一定的要求22、x=1【解析】方程两边同乘转化为整式方程,解整式方程后进行检验即可得.【详解】解:方程两边同乘得:,整理,得,解这个方程得,经检验,是增根,舍去,所以,原方程的根是【点睛】本题考查了解分式方程,解分式方程的关键是方程两边同乘分母的最简公分母化为整式方程然后求解,注意要进行检验.23、 (1) ABC是等腰三角形;(2)ABC是直角三角形;(3) x1=0,x2=1【解析】试题分析:(1)直接将x=1代入得出关于a,b的等式,进而得出a=b,即可判断ABC的形状;(2)利用根的判别式进而得出关于a,b,c的等式,进而判断ABC的形状;(3)利用ABC是等边三角形,则a=b=c,进而代入方程求出即可试题解析:(1)ABC是等腰三角形;理由:x=1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【G1工业锅炉司炉】理论试题及答案
- 消防基础知识快速入门试题及答案
- 2024计算机二级考试试题及答案分析
- 2024年CPA写作能力试题及答案
- 数据库连接方式试题及答案解读
- 黑龙江生态工程职业学院《大数据统计与分析》2023-2024学年第二学期期末试卷
- 黑龙江省佳木斯一中2025年下学期高三期中历史试题卷(简答)含解析
- 黑龙江省哈尔滨市阿城区二中2024-2025学年高三下学期期中模拟统练(七)历史试题含解析
- 黑龙江省大兴安岭漠河县高中2025届高三毕业生四月调研测试历史试题试卷含解析
- 黑龙江省鸡西市第十六中学2025年中考化学试题模拟(三诊)试题含解析
- 2024版互联网企业股东合作协议书范本3篇
- 合规教育培训
- 加油站安全检查表
- 化工设备安全操作规程
- 工业发展现状及未来趋势分析 汇报材料
- 信用管理与客户信用评估制度
- 2024年中国家具浸渍纸市场调查研究报告
- 2024年版《输变电工程标准工艺应用图册》
- 委托装修合同范本
- 2024-2030年中国石榴花提取物行业发展动态及供需前景预测报告
- UL859(个人修饰电器标准)中文
评论
0/150
提交评论