版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022中考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题
2、目要求的)1如图,在矩形ABCD中,AB=2,AD=3,点E是BC边上靠近点B的三等分点,动点P从点A出发,沿路径ADCE运动,则APE的面积y与点P经过的路径长x之间的函数关系用图象表示大致是( )ABCD2若不等式组无解,那么m的取值范围是()Am2Bm2Cm2Dm23当ab0时,yax2与yax+b的图象大致是()ABCD4下列运算正确的是( )A4x+5y=9xyB(m)3m7=m10C(x3y)5=x8y5Da12a8=a45从甲、乙、丙、丁四人中选一人参加诗词大会比赛,经过三轮初赛,他们的平均成绩都是86.5分,方差分别是S甲21.5,S乙22.6,S丙23.5,S丁23.68,你
3、认为派谁去参赛更合适()A甲B乙C丙D丁6如图,在菱形ABCD中,AB=BD,点E、F分别是AB、AD上任意的点(不与端点重合),且AE=DF,连接BF与DE相交于点G,连接CG与BD相交于点H给出如下几个结论:AEDDFB;S四边形BCDG=32CG2;若AF=2DF,则BG=6GF;CG与BD一定不垂直;BGE的大小为定值其中正确的结论个数为( )A4B3C2D17下表是某校合唱团成员的年龄分布.年龄/岁13141516频数515x对于不同的x,下列关于年龄的统计量不会发生改变的是( )A众数、中位数B平均数、中位数C平均数、方差D中位数、方差8下列四个图案中,不是轴对称图案的是()ABC
4、D9下列所述图形中,是轴对称图形但不是中心对称图形的是( )A线段B等边三角形C正方形D平行四边形10若关于x的一元二次方程(m-1)x2+x+m2-5m+3=0有一个根为1,则m的值为A1B3C0D1或311如图是一个由4个相同的正方体组成的立体图形,它的主视图是()ABCD12若,则的值为( )A12B2C3D0二、填空题:(本大题共6个小题,每小题4分,共24分)13写出一个平面直角坐标系中第三象限内点的坐标:(_)14如图,在ABC中,A60,若剪去A得到四边形BCDE,则12_15抛物线 y3x26x+a 与 x 轴只有一个公共点,则 a 的值为_16如图,半圆O的直径AB=2,弦C
5、DAB,COD=90,则图中阴影部分的面积为_17如果两个相似三角形的面积的比是4:9,那么它们对应的角平分线的比是_18某种商品每件进价为20元,调查表明:在某段时间内若以每件x元(20 x30,且x为整数)出售,可卖出(30 x)件若使利润最大,每件的售价应为_元三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,在ABC中,ABC=90,以AB为直径的O与AC边交于点D,过点D的直线交BC边于点E,BDE=A判断直线DE与O的位置关系,并说明理由若O的半径R=5,tanA=,求线段CD的长20(6分)如图,我们把一个半圆和抛物线的一部分围成的
6、封闭图形称为“果圆”,已知分别为“果圆”与坐标轴的交点,直线与“果圆”中的抛物线交于两点(1)求“果圆”中抛物线的解析式,并直接写出“果圆”被轴截得的线段的长;(2)如图,为直线下方“果圆”上一点,连接,设与交于,的面积记为,的面积即为,求的最小值(3)“果圆”上是否存在点,使,如果存在,直接写出点坐标,如果不存在,请说明理由21(6分)如图,将平行四边形ABCD纸片沿EF折叠,使点C与点A重合,点D落在点G处(1)连接CF,求证:四边形AECF是菱形;(2)若E为BC中点,BC26,tanB,求EF的长22(8分)如图,ABC中,AB=8厘米,AC=16厘米,点P从A出发,以每秒2厘米的速度
7、向B运动,点Q从C同时出发,以每秒3厘米的速度向A运动,其中一个动点到端点时,另一个动点也相应停止运动,设运动的时间为t用含t的代数式表示:AP= ,AQ= 当以A,P,Q为顶点的三角形与ABC相似时,求运动时间是多少?23(8分)如图,已知点、在直线上,且,于点,且,以为直径在的左侧作半圆,于,且.若半圆上有一点,则的最大值为_;向右沿直线平移得到;如图,若截半圆的的长为,求的度数;当半圆与的边相切时,求平移距离.24(10分)某保健品厂每天生产A,B两种品牌的保健品共600瓶,A,B两种产品每瓶的成本和利润如表,设每天生产A产品x瓶,生产这两种产品每天共获利y元(1)请求出y关于x的函数关
8、系式;(2)如果该厂每天至少投入成本26 400元,那么每天至少获利多少元?(3)该厂每天生产的A,B两种产品被某经销商全部订购,厂家对A产品进行让利,每瓶利润降低元,厂家如何生产可使每天获利最大?最大利润是多少?AB成本(元/瓶)5035利润(元/瓶)201525(10分)抛物线y=ax2+bx+3(a0)经过点A(1,0),B(,0),且与y轴相交于点C(1)求这条抛物线的表达式;(2)求ACB的度数;(3)点D是抛物线上的一动点,是否存在点D,使得tanDCB=tanACO若存在,请求出点D的坐标,若不存在,说明理由26(12分)已知抛物线y=ax2+ c(a0)(1)若抛物线与x轴交于
9、点B(4,0),且过点P(1,3),求该抛物线的解析式;(2)若a0,c =0,OA、OB是过抛物线顶点的两条互相垂直的直线,与抛物线分别交于A、B 两点,求证:直线AB恒经过定点(0,);(3)若a0,c 0,抛物线与x轴交于A,B两点(A在B左边),顶点为C,点P在抛物线上且位于第四象限直线PA、PB与y轴分别交于M、N两点当点P运动时,是否为定值?若是,试求出该定值;若不是,请说明理由27(12分)由甲、乙两个工程队承包某校校园的绿化工程,甲、乙两队单独完成这项工作所需的时间比是32,两队共同施工6天可以完成(1)求两队单独完成此项工程各需多少天?(2)此项工程由甲、乙两队共同施工6天完
10、成任务后,学校付给他们4000元报酬,若按各自完成的工程量分配这笔钱,问甲、乙两队各应得到多少元?参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、B【解析】由题意可知,当时,;当时,;当时,.时,;时,.结合函数解析式,可知选项B正确.【点睛】考点:1动点问题的函数图象;2三角形的面积2、A【解析】先求出每个不等式的解集,再根据不等式组解集的求法和不等式组无解的条件,即可得到m的取值范围【详解】由得,xm,由得,x1,又因为不等式组无解,所以m1故选A【点睛】此题的实质是考查不等式组的求法,求不等式组的解集,要根据以下原则:同
11、大取较大,同小较小,小大大小中间找,大大小小解不了3、D【解析】ab0,a、b同号当a0,b0时,抛物线开口向上,顶点在原点,一次函数过一、二、三象限,没有图象符合要求;当a0,b0时,抛物线开口向下,顶点在原点,一次函数过二、三、四象限,B图象符合要求故选B4、D【解析】各式计算得到结果,即可作出判断【详解】解:A、4x+5y=4x+5y,错误;B、(-m)3m7=-m10,错误;C、(x3y)5=x15y5,错误;D、a12a8=a4,正确;故选D【点睛】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键5、A【解析】根据方差的概念进行解答即可.【详解】由题意可知甲的方差最小,则应该
12、选择甲.故答案为A.【点睛】本题考查了方差,解题的关键是掌握方差的定义进行解题.6、B【解析】试题分析:ABCD为菱形,AB=AD,AB=BD,ABD为等边三角形,A=BDF=60,又AE=DF,AD=BD,AEDDFB,故本选项正确;BGE=BDG+DBF=BDG+GDF=60=BCD,即BGD+BCD=180,点B、C、D、G四点共圆,BGC=BDC=60,DGC=DBC=60,BGC=DGC=60,过点C作CMGB于M,CNGD于N(如图1),则CBMCDN(AAS),S四边形BCDG=S四边形CMGN,S四边形CMGN=2SCMG,CGM=60,GM=12CG,CM=32CG,S四边形
13、CMGN=2SCMG=21212CG32CG=34CG2,故本选项错误;过点F作FPAE于P点(如图2),AF=2FD,FP:AE=DF:DA=1:3,AE=DF,AB=AD,BE=2AE,FP:BE=FP:12AE=1:6,FPAE,PFBE,FG:BG=FP:BE=1:6,即BG=6GF,故本选项正确;当点E,F分别是AB,AD中点时(如图3),由(1)知,ABD,BDC为等边三角形,点E,F分别是AB,AD中点,BDE=DBG=30,DG=BG,在GDC与BGC中,DG=BG,CG=CG,CD=CB,GDCBGC,DCG=BCG,CHBD,即CGBD,故本选项错误;BGE=BDG+DBF
14、=BDG+GDF=60,为定值,故本选项正确;综上所述,正确的结论有,共3个,故选B考点:四边形综合题7、A【解析】由频数分布表可知后两组的频数和为10,即可得知总人数,结合前两组的频数知出现次数最多的数据及第15、16个数据的平均数,可得答案【详解】由题中表格可知,年龄为15岁与年龄为16岁的频数和为,则总人数为,故该组数据的众数为14岁,中位数为(岁),所以对于不同的x,关于年龄的统计量不会发生改变的是众数和中位数,故选A.【点睛】本题主要考查频数分布表及统计量的选择,由表中数据得出数据的总数是根本,熟练掌握平均数、中位数、众数及方差的定义和计算方法是解题的关键8、B【解析】根据轴对称图形
15、的定义逐项识别即可,一个图形的一部分,以某条直线为对称轴,经过轴对称能与图形的另一部分重合,这样的图形叫做轴对称图形.【详解】A、是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项正确;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误故选:B【点睛】本题考查了轴对称图形的识别,熟练掌握轴对称图形的定义是解答本题的关键.9、B【解析】根据中心对称图形和轴对称图形的概念对各选项分析判断即可得解【详解】解:A、线段,是轴对称图形,也是中心对称图形,故本选项不符合题意;B、等边三角形,是轴对称图形但不是中心对称图形,故本选项符合题意;C、正方形,是轴对称图形,也是中心对称图形,故本
16、选项不符合题意;D、平行四边形,不是轴对称图形,是中心对称图形,故本选项不符合题意故选:B【点睛】本题考查了中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合10、B【解析】直接把x=1代入已知方程即可得到关于m的方程,解方程即可求出m的值【详解】x=1是方程(m1)x2+x+m25m+3=0的一个根,(m1)+1+m25m+3=0,m24m+3=0,m=1或m=3,但当m=1时方程的二次项系数为0,m=3.故答案选B.【点睛】本题考查了一元二次方程的解,解题的关键是熟练的掌握一元二次方程的运算.11、D【
17、解析】从正面看,有2层,3列,左侧一列有1层,中间一列有2层,右侧一列有一层,据此解答即可.【详解】从正面看,有2层,3列,左侧一列有1层,中间一列有2层,右侧一列有一层,D是该几何体的主视图.故选D.【点睛】本题考查三视图的知识,从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,被遮挡的线画虚线.12、A【解析】先根据得出,然后利用提公因式法和完全平方公式对进行变形,然后整体代入即可求值【详解】,故选:A【点睛】本题主要考查整体代入法求代数式的值,掌握完全平方公式和整体代入法是解题的关键二、填空题:(本大题共6个小题,每小题4分,共24分)13、答
18、案不唯一,如:(1,1),横坐标和纵坐标都是负数即可【解析】让横坐标、纵坐标为负数即可【详解】在第三象限内点的坐标为:(1,1)(答案不唯一)故答案为答案不唯一,如:(1,1),横坐标和纵坐标都是负数即可14、240.【解析】试题分析:1+2=180+60=240考点:1.三角形的外角性质;2.三角形内角和定理15、3【解析】根据抛物线与x轴只有一个公共交点,则判别式等于0,据此即可求解【详解】抛物线y=3x26x+a与x轴只有一个公共点,判别式=36-12a=0,解得:a=3,故答案为3【点睛】本题考查了二次函数图象与x轴的公共点的个数的判定方法,如果0,则抛物线与x轴有两个不同的交点;如果
19、=0,与x轴有一个交点;如果0,与x轴无交点.16、 【解析】解:弦CDAB,SACD=SOCD,S阴影=S扇形COD=故答案为17、2:1【解析】先根据相似三角形面积的比是4:9,求出其相似比是2:1,再根据其对应的角平分线的比等于相似比,可知它们对应的角平分线比是2:1故答案为2:1.点睛:本题考查的是相似三角形的性质,即相似三角形对应边的比、对应高线的比、对应角平分线的比、周长的比都等于相似比;面积的比等于相似比的平方18、3【解析】试题分析:设最大利润为w元,则w=(x30)(30 x)=(x3)3+3,30 x30,当x=3时,二次函数有最大值3,故答案为3考点:3二次函数的应用;3
20、销售问题三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1) DE与O相切; 理由见解析;(2)【解析】(1)连接OD,利用圆周角定理以及等腰三角形的性质得出ODDE,进而得出答案;(2)得出BCDACB,进而利用相似三角形的性质得出CD的长【详解】解:(1)直线DE与O相切理由如下:连接ODOA=ODODA=A又BDE=AODA=BDEAB是O直径ADB=90即ODA+ODB=90BDE+ODB=90ODE=90ODDEDE与O相切;(2)R=5,AB=10,在RtABC中tanA=BC=ABtanA=10,AC=,BDC=ABC=90,BCD=ACB
21、BCDACBCD=【点睛】本题考查切线的判定、勾股定理及相似三角形的判定与性质,掌握相关性质定理灵活应用是本题的解题关键20、 (1);6;(2)有最小值;(3),.【解析】(1)先求出点B,C坐标,利用待定系数法求出抛物线解析式,进而求出点A坐标,即可求出半圆的直径,再构造直角三角形求出点D的坐标即可求出BD;(2)先判断出要求的最小值,只要CG最大即可,再求出直线EG解析式和抛物线解析式联立成的方程只有一个交点,求出直线EG解析式,即可求出CG,结论得证(3)求出线段AC,BC进而判断出满足条件的一个点P和点B重合,再利用抛物线的对称性求出另一个点P【详解】解:(1) 对于直线y=x-3,
22、令x=0,y=-3,B(0,-3),令y=0,x-3=0,x=4,C(4,0),抛物线y=x2+bx+c过B,C两点, 抛物线的解析式为y=;令y=0,=0,x=4或x=-1,A(-1,0),AC=5,如图2,记半圆的圆心为O,连接OD,OA=OD=OC=AC=,OO=OC-OC=4-=,在RtOOD中,OD=2, D(0,2),BD=2-(-3)=5; (2) 如图3,A(-1,0),C(4,0),AC=5,过点E作EGBC交x轴于G,ABF的AF边上的高和BEF的EF边的高相等,设高为h,SABF=AFh,SBEF=EFh,= 的最小值,最小,CFGE, 最小,即:CG最大,EG和果圆的抛
23、物线部分只有一个交点时,CG最大,直线BC的解析式为y=x-3,设直线EG的解析式为y=x+m,抛物线的解析式为y=x2-x-3,联立化简得,3x2-12x-12-4m=0,=144+43(12+4m)=0,m=-6,直线EG的解析式为y=x-6,令y=0,x-6=0,x=8,CG=4, =;(3),.理由:如图1,AC是半圆的直径,半圆上除点A,C外任意一点Q,都有AQC=90,点P只能在抛物线部分上,B(0,-3),C(4,0),BC=5,AC=5,AC=BC,BAC=ABC,当APC=CAB时,点P和点B重合,即:P(0,-3),由抛物线的对称性知,另一个点P的坐标为(3,-3),即:使
24、APC=CAB,点P坐标为(0,-3)或(3,-3)【点睛】本题是二次函数综合题,考查待定系数法,圆的性质,勾股定理,相似三角形的判定和性质,抛物线的对称性,等腰三角形的判定和性质,判断出CG最大时,两三角形面积之比最小是解本题的关键21、 (1)证明见解析;(2)EF1【解析】(1)如图1,利用折叠性质得EAEC,12,再证明13得到AEAF,则可判断四边形AECF为平行四边形,从而得到四边形AECF为菱形;(2)作EHAB于H,如图,利用四边形AECF为菱形得到AEAFCE13,则判断四边形ABEF为平行四边形得到EFAB,根据等腰三角形的性质得AHBH,再在RtBEH中利用tanB可计算
25、出BH5,从而得到EFAB2BH1【详解】(1)证明:如图1,平行四边形ABCD纸片沿EF折叠,使点C与点A重合,点D落在点G处,EAEC,12,四边形ABCD为平行四边形,ADBC,23,13,AEAF,AFCE,而AFCE,四边形AECF为平行四边形,EAEC,四边形AECF为菱形;(2)解:作EHAB于H,如图,E为BC中点,BC26,BEEC13,四边形AECF为菱形,AEAFCE13,AFBE,四边形ABEF为平行四边形,EFAB,EAEB,EHAB,AHBH,在RtBEH中,tanB,设EH12x,BH5x,则BE13x,13x13,解得x1,BH5,AB2BH1,EF1【点睛】本
26、题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等也考查了平行四边形的性质、菱形的判定与性质22、(1)AP=2t,AQ=163t;(2)运动时间为秒或1秒【解析】(1)根据路程=速度时间,即可表示出AP,AQ的长度.(2)此题应分两种情况讨论(1)当APQABC时;(2)当APQACB时利用相似三角形的性质求解即可【详解】(1)AP=2t,AQ=163t(2)PAQ=BAC,当时,APQABC,即,解得 当时,APQACB,即,解得t=1运动时间为秒或1秒【点睛】考查相似三角形的判定与性质,掌握相似三角形的判定定理与性质定理是解题
27、的关键.注意不要漏解.23、(1);(2);【解析】(1)由图可知当点F与点D重合时,AF最大,根据勾股定理即可求出此时AF的长;(2)连接EG、EH根据的长为可求得GEH=60,可得GEH是等边三角形,根据等边三角形的三个角都等于60得出HGE=60,可得EG/AO,求得GEO=90,得出GEO是等腰直角三角形,求得EGO=45,根据平角的定义即可求出AGO的度数;分CA与半圆相切和BA与半圆相切两种情况进行讨论,利用切线的性质、勾股定理、切斜长定理等知识进行解答即可得出答案【详解】解:(1)当点F与点D重合时,AF最大,AF最大=AD=,故答案为:;(2)连接、.,.,是等边三角形,.,.
28、当切半圆于时,连接,则.,切半圆于点,.,平移距离为.当切半圆于时,连接并延长于点,.,.【点睛】本题主要考查了弧长公式、勾股定理、切线的性质,作出过切点的半径构造出直角三角形是解决此题的关键24、(1)y=5x+9000;(2)每天至少获利10800元;(3)每天生产A产品250件,B产品350件获利最大,最大利润为9625元 【解析】试题分析:(1)A种品牌白酒x瓶,则B种品牌白酒(600-x)瓶;利润=A种品牌白酒瓶数A种品牌白酒一瓶的利润+B种品牌白酒瓶数B种品牌白酒一瓶的利润,列出函数关系式;(2)A种品牌白酒x瓶,则B种品牌白酒(600-x)瓶;成本=A种品牌白酒瓶数A种品牌白酒一
29、瓶的成本+B种品牌白酒瓶数B种品牌白酒一瓶的成本,列出不等式,求x的值,再代入(1)求利润(3)列出y与x的关系式,求y的最大值时,x的值.试题解析:(1)y=20 x+15(600-x) =5x+9000,y关于x的函数关系式为y=5x+9000;(2)根据题意,得50 x+35(600-x)26400, 解得x360, y=5x+9000,50,y随x的增大而增大,当x=360时,y有最小值为10800,每天至少获利10800元;(3) ,当x=250时,y有最大值9625,每天生产A产品250件,B产品350件获利最大,最大利润为9625元 25、(1)y=2x2+x+3;(2)ACB=
30、45;(3)D点坐标为(1,2)或(4,25)【解析】(1)设交点式y=a(x+1)(x),展开得到a=3,然后求出a即可得到抛物线解析式;(2)作AEBC于E,如图1,先确定C(0,3),再分别计算出AC=,BC=,接着利用面积法计算出AE=,然后根据三角函数的定义求出ACE即可;(3)作BHCD于H,如图2,设H(m,n),证明RtBCHRtACO,利用相似计算出BH=,CH=,再根据两点间的距离公式得到(m)2+n2=()2,m2+(n3)2=()2,接着通过解方程组得到H(,)或(),然后求出直线CD的解析式,与二次函数联立成方程组,解方程组即可【详解】(1)设抛物线解析式为y=a(x
31、+1)(x),即y=ax2axa,a=3,解得:a=2,抛物线解析式为y=2x2+x+3;(2)作AEBC于E,如图1,当x=0时,y=2x2+x+3=3,则C(0,3),而A(1,0),B(,0),AC=,BC=AEBC=OCAB,AE=在RtACE中,sinACE=,ACE=45,即ACB=45;(3)作BHCD于H,如图2,设H(m,n)tanDCB=tanACO,HCB=ACO,RtBCHRtACO,=,即=,BH=,CH=,(m)2+n2=()2=,m2+(n3)2=()2=,得m=2n+,把代入得:(2n+)2+n2=,整理得:80n248n9=0,解得:n1=,n2=当n=时,m=2n+=,此时H(,),易得直线CD的解析式为y=7x+3,解方程组得:或,此时D点坐标为(4,25);当n=时,m=2n+=,此时H(),易得直线CD的解析式为y=x+3,解方程组得:或,此时D点坐标为(1,2)综上所述:D点坐标为(1,2)或(4,25)【点睛】本题是二次函数综合题熟练掌握二次函数图象上点的坐标特征、二次函数的性质和相似三角形的判定的性质;会利用待定系数法求函数解析式,把求两函数交点问题转化为解方程组的问题;理解坐标与图形性质
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 金属材料学备课笔记
- 政府办公楼环境卫生合同
- 年产30000吨蔬菜加工设备改造项目可行性研究报告写作模板-申批备案
- 内蒙古自治区鄂尔多斯市伊金霍洛旗2024-2025学年八年级上学期期中语文试题(含答案)
- 2024年云计算平台搭建及运维合同
- 2021非营利组织印章管理制度
- 中班健康教案:弯腰半蹲走
- 人教版七年级政治上册教案享受学习教案
- 大班健康活动教案:小小营养设计师
- 2024年农民公寓转让交易合同
- 《血气分析解析》课件
- 行业规范守则管理制度
- 视频剪辑课件
- 大米食品安全培训
- 七年级上历史半期测试题
- 宫角妊娠教学查房课件
- 外卖运营培训手册
- 一年级上册语文声调练习题7套
- 销售个人绩效申请模板
- 针灸推拿学专业大学生职业生涯规划书
- 《茶馆(节选)》-统编版高中语文选择性必修下册
评论
0/150
提交评论