陕西省延安市洛川县2021-2022学年中考二模数学试题含解析_第1页
陕西省延安市洛川县2021-2022学年中考二模数学试题含解析_第2页
陕西省延安市洛川县2021-2022学年中考二模数学试题含解析_第3页
陕西省延安市洛川县2021-2022学年中考二模数学试题含解析_第4页
陕西省延安市洛川县2021-2022学年中考二模数学试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1计算(ab2)3(ab)2的结果是()Aab4 Bab4 Cab3 Dab32在-,0,2这四个数中,最小的数是( )ABC0D23如图是由三个相同小正方体组成的几何体的主视图,那么这个几何体可以是()A B C D4如图,的三边的长分别为

2、20,30,40,点O是三条角平分线的交点,则等于( )A111B123C234D3455如图所示的几何体是一个圆锥,下面有关它的三视图的结论中,正确的是()A主视图是中心对称图形B左视图是中心对称图形C主视图既是中心对称图形又是轴对称图形D俯视图既是中心对称图形又是轴对称图形6如图,点D、E分别为ABC的边AB、AC上的中点,则ADE的面积与四边形BCED的面积的比为()A1:2B1:3C1:4D1:17如图所示,正方形ABCD的面积为12,ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为()A2B2C3D8不等式组的解集在数轴上表示正

3、确的是()ABCD9如图是由若干个小正方体组成的几何体从上面看到的图形,小正方形中的数字表示该位置小正方体的个数,这个几何体从正面看到的图形是( )ABCD10将抛物线y=-2x2+1向右平移1个单位长度,再向上平移1个单位长度所得的抛物线解析式为( )Ay=-2(x+1)2By=-2(x+1)2+2Cy=-2(x-1)2+2Dy=-2(x-1)2+111如图,数轴上有M、N、P、Q四个点,其中点P所表示的数为a,则数-3a所对应的点可能是( )AMBNCPDQ12下列函数中,二次函数是( )Ay4x+5Byx(2x3)Cy(x+4)2x2Dy二、填空题:(本大题共6个小题,每小题4分,共24

4、分)13如果梯形的中位线长为6,一条底边长为8,那么另一条底边长等于_.14如图,两个三角形相似,AD=2,AE=3,EC=1,则BD=_15因式分解:3a2-6a+3=_16已知,直接y=kx+b(k0,b0)与x轴、y轴交A、B两点,与双曲线y=(x0)交于第一象限点C,若BC=2AB,则SAOB=_.17某次数学测试,某班一个学习小组的六位同学的成绩如下:84、75、75、92、86、99,则这六位同学成绩的中位数是_18如图,在ABC中,ABAC,D、E、F分别为AB、BC、AC的中点,则下列结论:ADFFEC;四边形ADEF为菱形;其中正确的结论是_.(填写所有正确结论的序号)三、解

5、答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)我们来定义一种新运算:对于任意实数 x、y,“”为 ab(a+1)(b+1)1.(1)计算(3)9(2)嘉琪研究运算“”之后认为它满足交换律,你认为她的判断 ( 正确、错误)(3)请你帮助嘉琪完成她对运算“”是否满足结合律的证明 20(6分)如图,在ABC中,ABC=90,BD为AC边上的中线(1)按如下要求尺规作图,保留作图痕迹,标注相应的字母:过点C作直线CE,使CEBC于点C,交BD的延长线于点E,连接AE;(2)求证:四边形ABCE是矩形21(6分)解不等式组:,并把解集在数轴上表示出来。22(8分)

6、如图1,在四边形ABCD中,ADBC,AB=CD=13,AD=11,BC=21,E是BC的中点,P是AB上的任意一点,连接PE,将PE绕点P逆时针旋转90得到PQ(1)如图2,过A点,D点作BC的垂线,垂足分别为M,N,求sinB的值;(2)若P是AB的中点,求点E所经过的路径弧EQ的长(结果保留);(3)若点Q落在AB或AD边所在直线上,请直接写出BP的长23(8分)在数学实践活动课上,老师带领同学们到附近的湿地公园测量园内雕塑的高度用测角仪在A处测得雕塑顶端点C的仰角为30,再往雕塑方向前进4米至B处,测得仰角为45问:该雕塑有多高?(测角仪高度忽略不计,结果不取近似值)24(10分)如图

7、,在正方形ABCD的外部,分别以CD,AD为底作等腰RtCDE、等腰RtDAF,连接AE、CF,交点为O(1)求证:CDFADE;(2)若AF1,求四边形ABCO的周长25(10分)已知抛物线,与轴交于两点,与轴交于点,且抛物线的对称轴为直线(1)抛物线的表达式;(2)若抛物线与抛物线关于直线对称,抛物线与轴交于点两点(点在点左侧),要使,求所有满足条件的抛物线的表达式26(12分)已知A(4,2)、B(n,4)两点是一次函数y=kx+b和反比例函数y=图象的两个交点求一次函数和反比例函数的解析式;求AOB的面积;观察图象,直接写出不等式kx+b0的解集27(12分)阅读下列材料,解答下列问题

8、:材料1把一个多项式化成几个整式的积的形式,这种变形叫做因式分解,也叫分解因式如果把整式的乘法看成一个变形过程,那么多项式的因式分解就是它的逆过程公式法(平方差公式、完全平方公式)是因式分解的一种基本方法如对于二次三项式a2+2ab+b2,可以逆用乘法公式将它分解成(a+b)2的形式,我们称a2+2ab+b2为完全平方式但是对于一般的二次三项式,就不能直接应用完全平方了,我们可以在二次三项式中先加上一项,使其配成完全平方式,再减去这项,使整个式子的值不变,于是有:x2+2ax3a2x2+2ax+a2a23a2(x+a)2(2a)2(x+3a)(xa)材料2因式分解:(x+y)2+2(x+y)+

9、1解:将“x+y”看成一个整体,令x+yA,则原式A2+2A+1(A+1)2再将“A”还原,得:原式(x+y+1)2上述解题用到的是“整体思想”,整体思想是数学解题中常见的一种思想方法,请你解答下列问题:(1)根据材料1,把c26c+8分解因式;(2)结合材料1和材料2完成下面小题:分解因式:(ab)2+2(ab)+1;分解因式:(m+n)(m+n4)+3参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、B【解析】根据积的乘方的运算法则,先分别计算积的乘方,然后再根据单项式除法法则进行计算即可得,(-ab2)3(-ab)2=-a

10、3b6a2b2=-ab4,故选B.2、D【解析】根据正数大于0,负数小于0,正数大于一切负数,两个负数,绝对值大的反而小比较即可.【详解】在,0,1这四个数中,10,故最小的数为:1故选D【点睛】本题考查了实数的大小比较,解答本题的关键是熟练掌握实数的大小比较方法,特别是两个负数的大小比较.3、A【解析】试题分析:主视图是从正面看到的图形,只有选项A符合要求,故选A考点:简单几何体的三视图4、C【解析】作OFAB于F,OEAC于E,ODBC于D,根据角平分线的性质得到OD=OE=OF,根据三角形的面积公式计算即可【详解】作OFAB于F,OEAC于E,ODBC于D,三条角平分线交于点O,OFAB

11、,OEAC,ODBC,OD=OE=OF,SABO:SBCO:SCAO=AB:BC:CA=20:30:402:3:4,故选C【点睛】考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键5、D【解析】先得到圆锥的三视图,再根据中心对称图形和轴对称图形的定义求解即可【详解】解:A、主视图不是中心对称图形,故A错误;B、左视图不是中心对称图形,故B错误;C、主视图不是中心对称图形,是轴对称图形,故C错误;D、俯视图既是中心对称图形又是轴对称图形,故D正确故选:D【点睛】本题考查简单几何体的三视图,中心对称图形和轴对称图形,熟练掌握各自的定义是解题关键6、B【解析】根据中位线定理

12、得到DEBC,DE=BC,从而判定ADEABC,然后利用相似三角形的性质求解.【详解】解:D、E分别为ABC的边AB、AC上的中点,DE是ABC的中位线,DEBC,DE=BC,ADEABC,ADE的面积:ABC的面积=1:4,ADE的面积:四边形BCED的面积=1:3;故选B【点睛】本题考查三角形中位线定理及相似三角形的判定与性质7、A【解析】连接BD,交AC于O,正方形ABCD,OD=OB,ACBD,D和B关于AC对称,则BE交于AC的点是P点,此时PD+PE最小,在AC上取任何一点(如Q点),QD+QE都大于PD+PE(BE),此时PD+PE最小,此时PD+PE=BE,正方形的面积是12,

13、等边三角形ABE,BE=AB=,即最小值是2,故选A.【点睛】本题考查了正方形的性质,等边三角形的性质,轴对称-最短路线问题等知识点的应用,关键是找出PD+PE最小时P点的位置8、A【解析】分析:分别求出各不等式的解集,再求出其公共解集并在数轴上表示出来,选出符合条件的选项即可详解:由得,x1,由得,x-1,故此不等式组的解集为:-1x1在数轴上表示为:故选A点睛:本题考查的是在数轴上表示一元一此不等式组的解集,把每个不等式的解集在数轴上表示出来(,向右画;,向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集有几个就要几个

14、在表示解集时“”,“”要用实心圆点表示;“”,“”要用空心圆点表示9、C【解析】先根据俯视图判断出几何体的形状,再根据主视图是从正面看画出图形即可【详解】解:由俯视图可知,几何体共有两排,前面一排从左到右分别是1个和2个小正方体搭成两个长方体,后面一排分别有2个、3个、1个小正方体搭成三个长方体,并且这两排右齐,故从正面看到的视图为:故选:C【点睛】本题考查几何体三视图,熟记三视图的概念并判断出物体的排列方式是解题的关键10、C【解析】试题分析:抛物线y=-2x2+1向右平移1个单位长度,平移后解析式为:y=-2(x-1)2+1,再向上平移1个单位长度所得的抛物线解析式为:y=-2(x-1)2

15、+2故选C考点:二次函数图象与几何变换11、A【解析】解:点P所表示的数为a,点P在数轴的右边,-3a一定在原点的左边,且到原点的距离是点P到原点距离的3倍,数-3a所对应的点可能是M,故选A点睛:本题考查了数轴,解决本题的关键是判断-3a一定在原点的左边,且到原点的距离是点P到原点距离的3倍12、B【解析】A. y=-4x+5是一次函数,故此选项错误;B.y= x(2x-3)=2x2-3x,是二次函数,故此选项正确;C.y=(x+4)2x2=8x+16,为一次函数,故此选项错误;D.y=是组合函数,故此选项错误.故选B.二、填空题:(本大题共6个小题,每小题4分,共24分)13、4.【解析】

16、只需根据梯形的中位线定理“梯形的中位线等于两底和的一半”,进行计算.【详解】解:根据梯形的中位线定理“梯形的中位线等于两底和的一半”,则另一条底边长.故答案为:4【点睛】本题考查梯形中位线,用到的知识点为:梯形的中位线=(上底下底)14、1【解析】根据相似三角形的对应边的比相等列出比例式,计算即可【详解】ADEACB,=,即=,解得:BD=1故答案为1【点睛】本题考查的是相似三角形的性质,掌握相似三角形的对应边的比相等是解题的关键15、3(a1)2【解析】先提公因式,再套用完全平方公式.【详解】解:3a2-6a+3=3(a2-2a+1)=3(a-1)2.【点睛】考点:提公因式法与公式法的综合运

17、用16、【解析】根据题意可设出点C的坐标,从而得到OA和OB的长,进而得到AOB的面积即可.【详解】直接y=kx+b与x轴、y轴交A、B两点,与双曲线y=交于第一象限点C,若BC=2AB,设点C的坐标为(c,)OA=0.5c,OB=,SAOB=【点睛】此题主要考查反比例函数的图像,解题的关键是根据题意设出C点坐标进行求解.17、85【解析】根据中位数求法,将学生成绩从小到大排列,取中间两数的平均数即可解题.【详解】解:将六位同学的成绩按从小到大进行排列为:75,75,84,86,92,99,中位数为中间两数84和86的平均数,这六位同学成绩的中位数是85.【点睛】本题考查了中位数的求法,属于简

18、单题,熟悉中位数的概念是解题关键.18、【解析】根据三角形的中位线定理可得出AD=FE、AF=FC、DF=EC,进而可证出ADFFEC(SSS),结论正确;根据三角形中位线定理可得出EFAB、EF=AD,进而可证出四边形ADEF为平行四边形,由AB=AC结合D、F分别为AB、AC的中点可得出AD=AF,进而可得出四边形ADEF为菱形,结论正确;根据三角形中位线定理可得出DFBC、DF=BC,进而可得出ADFABC,再利用相似三角形的性质可得出,结论正确此题得解【详解】解:D、E、F分别为AB、BC、AC的中点,DE、DF、EF为ABC的中位线,AD=AB=FE,AF=AC=FC,DF=BC=E

19、C在ADF和FEC中,ADFFEC(SSS),结论正确;E、F分别为BC、AC的中点,EF为ABC的中位线,EFAB,EF=AB=AD,四边形ADEF为平行四边形AB=AC,D、F分别为AB、AC的中点,AD=AF,四边形ADEF为菱形,结论正确;D、F分别为AB、AC的中点,DF为ABC的中位线,DFBC,DF=BC,ADFABC,结论正确故答案为【点睛】本题考查了菱形的判定与性质、全等三角形的判定与性质、相似三角形的判定与性质以及三角形中位线定理,逐一分析三条结论的正误是解题的关键三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)-21;(2)正确

20、;(3)运算“”满足结合律【解析】(1)根据新定义运算法则即可求出答案(2)只需根据整式的运算证明法则ab=ba即可判断(3)只需根据整式的运算法则证明(ab)c=a(bc)即可判断【详解】(1)(-3)9=(-3+1)(9+1)-1=-21(2)ab=(a+1)(b+1)-1ba=(b+1)(a+1)-1,ab=ba,故满足交换律,故她判断正确;(3)由已知把原式化简得ab=(a+1)(b+1)-1=ab+a+b(ab)c=(ab+a+b)c=(ab+a+b+1)(c+1)-1=abc+ac+ab+bc+a+b+ca(bc)=a(bcv+b+c)+(bc+b+c)+a=abc+ac+ab+b

21、c+a+b+c(ab)c=a(bc)运算“”满足结合律【点睛】本题考查新定义运算,解题的关键是正确理解新定义运算的法则,本题属于中等题型20、 (1)见解析;(2)见解析.【解析】(1)根据题意作图即可;(2)先根据BD为AC边上的中线,AD=DC,再证明ABDCED(AAS)得AB=EC,已知ABC=90即可得四边形ABCE是矩形【详解】(1)解:如图所示:E点即为所求;(2)证明:CEBC,BCE=90,ABC=90,BCE+ABC=180,ABCE,ABE=CEB,BAC=ECA,BD为AC边上的中线,AD=DC,在ABD和CED中,ABDCED(AAS),AB=EC,四边形ABCE是平

22、行四边形,ABC=90,平行四边形ABCE是矩形【点睛】本题考查了全等三角形的判定与性质与矩形的性质,解题的关键是熟练的掌握全等三角形的判定与性质与矩形的性质.21、,解集在数轴上表示见解析【解析】试题分析:先解不等式组中的每一个不等式,得到不等式组的解集,再把不等式的解集表示在数轴上即可试题解析:由得:由得:不等式组的解集为:解集在数轴上表示为:22、(1)1213 ;(2)5;(3)PB的值为10526或3914【解析】(1)如图1中,作AMCB用M,DNBC于N,根据题意易证RtABMRtDCN,再根据全等三角形的性质可得出对应边相等,根据勾股定理可求出AM的值,即可得出结论;(2)连接

23、AC,根据勾股定理求出AC的长,再根据弧长计算公式即可得出结论;(3)当点Q落在直线AB上时,根据相似三角形的性质可得对应边成比例,即可求出PB的值;当点Q在DA的延长线上时,作PHAD交DA的延长线于H,延长HP交BC于G,设PB=x,则AP=13x,再根据全等三角形的性质可得对应边相等,即可求出PB的值.【详解】解:(1)如图1中,作AMCB用M,DNBC于NDNM=AMN=90,ADBC,DAM=AMN=DNM=90,四边形AMND是矩形,AM=DN,AB=CD=13,RtABMRtDCN,BM=CN,AD=11,BC=21,BM=CN=5,AM=12,在RtABM中,sinB=(2)如

24、图2中,连接AC在RtACM中,AC=20,PB=PA,BE=EC,PE=AC=10,的长=5(3)如图3中,当点Q落在直线AB上时,EPBAMB,=,=,PB=如图4中,当点Q在DA的延长线上时,作PHAD交DA的延长线于H,延长HP交BC于G设PB=x,则AP=13xADBC,B=HAP,PG=x,PH=(13x),BG=x,PGEQHP,EG=PH,x=(13x),BP=综上所述,满足条件的PB的值为或【点睛】本题考查了相似三角形与全等三角形的性质,解题的关键是熟练的掌握相似三角形与全等三角形的判定与性质.23、该雕塑的高度为(2+2)米【解析】过点C作CDAB,设CD=x,由CBD=4

25、5知BD=CD=x米,根据tanA=列出关于x的方程,解之可得【详解】解:如图,过点C作CDAB,交AB延长线于点D,设CD=x米,CBD=45,BDC=90,BD=CD=x米,A=30,AD=AB+BD=4+x,tanA=,即,解得:x=2+2,答:该雕塑的高度为(2+2)米【点睛】本题主要考查解直角三角形的应用-仰角俯角问题,解题的关键是根据题意构建直角三角形,并熟练掌握三角函数的应用24、(1)详见解析;(2)【解析】(1)根据正方形的性质和等腰直角三角形的性质以及全等三角形的判定得出CDFADE;(2)连接AC,利用正方形的性质和四边形周长解答即可【详解】(1)证明:四边形ABCD是正

26、方形CDAD,ADC90,CDE和DAF都是等腰直角三角形,FD AD,DECD,ADFCDE45,CDFADE135,FDDE,CDFADE(SAS); (2)如图,连接AC四边形ABCD是正方形,ACDDAC45,CDFADE,DCFDAE,OACOCA,OAOC,DCE45,ACE90,OCEOEC,OCOE,AFFD1,ADABBC,AC2,OA+OCOA+OEAE ,四边形ABCO的周长AB+BC+OA+OC 【点睛】本题考查了正方形的性质,全等三角形的判定与性质,等腰直角三角形的性质,难点在于(2)作辅助线构造出全等三角形25、(1);(2)【解析】(1)根据待定系数法即可求解;(2)根据题意知,根据三角形面积公式列方程即可求解【详解】(1)根据题意得:,解得:,抛物线的表达式为:;(2)抛物线与抛物线关于直线对称,抛物线的对称轴为直线抛物线的对称轴为直线,抛物线与轴交于点两点且点在点左侧,的横坐标为:,令,则,解得:,令,则,点的坐标分别为,点的坐标为,,,即,解得:或,抛物线与抛物线关于直线对称,抛物线的对称轴为直线,抛物线的表达式为或【点睛】本题属于二次函数综合题,涉及了待定系数法求函数解析式、一元二次方程的解及三角形的面积,第(2)问的关键是得到抛物线的对称轴为直线26、(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论