




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡
2、一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1下列命题正确的是( )A内错角相等 B1是无理数C1的立方根是1 D两角及一边对应相等的两个三角形全等2如图,在ABC中,cosB,sinC,AC5,则ABC的面积是( )A B12C14D213如图,以AOB的顶点O为圆心,适当长为半径画弧,交OA于点C,交OB于点D再分别以点C、D为圆心,大于CD的长为半径画弧,两弧在AOB内部交于点E,过点E作射线OE,连接CD则下列说法错误的是A射线OE是AOB的平分线BCOD是等腰三角形CC、D两点关于OE所在直线对称DO、E两点关于CD所在直线对称4已知二次函数y=ax2+bx
3、+c的图像经过点(0,m)、(4、m)、(1,n),若nm,则( )Aa0且4a+b=0Ba0且4a+b=0Ca0且2a+b=0Da0且2a+b=05如图是某几何体的三视图及相关数据,则该几何体的全面积是()A15B24C20D106把6800000,用科学记数法表示为()A6.8105B6.8106C6.8107D6.81087计算(-1)2的结果是( )A-2B-1C1D28在平面直角坐标系中,将抛物线绕着它与轴的交点旋转180,所得抛物线的解析式是( )ABCD9已知抛物线y=ax2(2a+1)x+a1与x轴交于A(x1,0),B(x2,0)两点,若x11,x22,则a的取值范围是()A
4、a3B0a3Ca3D3a010已知O的半径为5,且圆心O到直线l的距离是方程x2-4x-12=0的一个根,则直线l与圆的位置关系是( )A相交 B相切 C相离 D无法确定二、填空题(共7小题,每小题3分,满分21分)11一个不透明的袋子中装有三个小球,它们除分别标有的数字 1,3,5 不同外,其他完全相同从袋子中任意摸出一球后放回,再任意摸出一球,则两次摸出的球所标数字之 和为8的概率是_12在平面直角坐标系中,P的圆心是(2,a)(a2),半径为2,函数y=x的图象被P截得的弦AB的长为,则a的值是_13点G是三角形ABC的重心,那么 =_14若代数式x26x+b可化为(x+a)25,则a+
5、b的值为_15用一个圆心角为120,半径为4的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径为_16如图,正方形内的阴影部分是由四个直角边长都是1和3的直角三角形组成的,假设可以在正方形内部随意取点,那么这个点取在阴影部分的概率为 17如图所示,过y轴正半轴上的任意一点P,作x轴的平行线,分别与反比例函数的图象交于点A和点B,若点C是x轴上任意一点,连接AC、BC,则ABC的面积为_三、解答题(共7小题,满分69分)18(10分)今年深圳“读书月”期间,某书店将每本成本为30元的一批图书,以40元的单价出售时,每天的销售量是300本已知在每本涨价幅度不超过10元的情况下,若每本涨价1元,则每天就
6、会少售出10本,设每本书上涨了x元请解答以下问题:(1)填空:每天可售出书 本(用含x的代数式表示);(2)若书店想通过售出这批图书每天获得3750元的利润,应涨价多少元?19(5分)如图,ABD是O的内接三角形,E是弦BD的中点,点C是O外一点且DBCA,连接OE延长与圆相交于点F,与BC相交于点C(1)求证:BC是O的切线;(2)若O的半径为6,BC8,求弦BD的长20(8分)研究发现,抛物线上的点到点F(0,1)的距离与到直线l:的距离相等.如图1所示,若点P是抛物线上任意一点,PHl于点H,则PF=PH.基于上述发现,对于平面直角坐标系xOy中的点M,记点到点的距离与点到点的距离之和的
7、最小值为d,称d为点M关于抛物线的关联距离;当时,称点M为抛物线的关联点.(1)在点,中,抛物线的关联点是_ ;(2)如图2,在矩形ABCD中,点,点,若t=4,点M在矩形ABCD上,求点M关于抛物线的关联距离d的取值范围;若矩形ABCD上的所有点都是抛物线的关联点,则t的取值范围是_.21(10分)某中学为了解八年级学习体能状况,从八年级学生中随机抽取部分学生进行体能测试,测试结果分为A、B、C、D四个等级请根据两幅统计图中的信息回答下列问题:(1)本次抽样调查共抽取了多少名学生?(2)求测试结果为C等级的学生数,并补全条形图;(3)若该中学八年级共有700名学生,请你估计该中学八年级学生中
8、体能测试结果为D等级的学生有多少名22(10分)已知:如图,梯形ABCD,DCAB,对角线AC平分BCD,点E在边CB的延长线上,EAAC,垂足为点A(1)求证:B是EC的中点;(2)分别延长CD、EA相交于点F,若AC2=DCEC,求证:AD:AF=AC:FC23(12分)随着社会经济的发展,汽车逐渐走入平常百姓家某数学兴趣小组随机抽取了我市某单位部分职工进行调查,对职工购车情况分4类(A:车价40万元以上;B:车价在2040万元;C:车价在20万元以下;D:暂时未购车)进行了统计,并将统计结果绘制成以下条形统计图和扇形统计图请结合图中信息解答下列问题:(1)调查样本人数为_,样本中B类人数
9、百分比是_,其所在扇形统计图中的圆心角度数是_;(2)把条形统计图补充完整;(3)该单位甲、乙两个科室中未购车人数分别为2人和3人,现从中选2人去参观车展,用列表或画树状图的方法,求选出的2人来自不同科室的概率24(14分)如图,在每个小正方形的边长为1的网格中,点A,B,C均在格点上()ABC的面积等于_;()若四边形DEFG是正方形,且点D,E在边CA上,点F在边AB上,点G在边BC上,请在如图所示的网格中,用无刻度的直尺,画出点E,点G,并简要说明点E,点G的位置是如何找到的(不要求证明)_参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解析】解:A两直线平行
10、,内错角相等,故A错误;B1是有理数,故B错误;C1的立方根是1,故C错误;D两角及一边对应相等的两个三角形全等,正确故选D2、A【解析】根据已知作出三角形的高线AD,进而得出AD,BD,CD,的长,即可得出三角形的面积【详解】解:过点A作ADBC,ABC中,cosB=,sinC=,AC=5,cosB=,B=45,sinC=,AD=3,CD=4,BD=3,则ABC的面积是:ADBC=3(3+4)=故选:A【点睛】此题主要考查了解直角三角形的知识,作出ADBC,进而得出相关线段的长度是解决问题的关键3、D【解析】试题分析:A、连接CE、DE,根据作图得到OC=OD,CE=DE在EOC与EOD中,
11、OC=OD,CE=DE,OE=OE,EOCEOD(SSS)AOE=BOE,即射线OE是AOB的平分线,正确,不符合题意B、根据作图得到OC=OD,COD是等腰三角形,正确,不符合题意C、根据作图得到OC=OD,又射线OE平分AOB,OE是CD的垂直平分线C、D两点关于OE所在直线对称,正确,不符合题意D、根据作图不能得出CD平分OE,CD不是OE的平分线,O、E两点关于CD所在直线不对称,错误,符合题意故选D4、A【解析】由图像经过点(0,m)、(4、m)可知对称轴为x=2,由nm知x=1时,y的值小于x=0时y的值,根据抛物线的对称性可知开口方向,即可知道a的取值.【详解】图像经过点(0,m
12、)、(4、m)对称轴为x=2,则,4a+b=0图像经过点(1,n),且nm抛物线的开口方向向上,a0,故选A.【点睛】此题主要考查抛物线的图像,解题的关键是熟知抛物线的对称性.5、B【解析】解:根据三视图得到该几何体为圆锥,其中圆锥的高为4,母线长为5,圆锥底面圆的直径为6,所以圆锥的底面圆的面积=()2=9,圆锥的侧面积=56=15,所以圆锥的全面积=9+15=24故选B点睛:本题考查了圆锥的计算:圆锥的侧面展开图为扇形,扇形的半径等于圆锥的母线长,扇形的弧长等于圆锥底面圆的周长也考查了三视图6、B【解析】分析:科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要
13、看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数详解:把6800000用科学记数法表示为6.81 故选B点睛:本题考查了科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值7、A【解析】根据两数相乘,同号得正,异号得负,再把绝对值相乘计算即可.【详解】-12=-12=-2.故选A.【点睛】本题考查了有理数的乘法计算,解答本题的关键是熟练掌握有理数的乘法法则.8、B【解析】把抛物线y=x2+2x+3整理成顶点式形式并求出顶点坐标,再求出与y轴的交点坐
14、标,然后求出所得抛物线的顶点,再利用顶点式形式写出解析式即可【详解】解:y=x2+2x+3=(x+1)2+2,原抛物线的顶点坐标为(-1,2),令x=0,则y=3,抛物线与y轴的交点坐标为(0,3),抛物线绕与y轴的交点旋转180,所得抛物线的顶点坐标为(1,4),所得抛物线的解析式为:y=-x2+2x+3或y=-(x-1)2+4故选:B【点睛】本题考查了二次函数图象与几何变换,利用顶点的变化确定函数解析式的变化可以使求解更简便9、B【解析】由已知抛物线求出对称轴,解:抛物线:,对称轴,由判别式得出a的取值范围,由得故选B10、C【解析】首先求出方程的根,再利用半径长度,由点O到直线a的距离为
15、d,若dr,则直线与与圆相离.【详解】x2-4x-12=0,(x+2)(x-6)=0,解得:x1=-2(不合题意舍去),x2=6,点O到直线l距离是方程x2-4x-12=0的一个根,即为6,点O到直线l的距离d=6,r=5,dr,直线l与圆相离.故选:C【点睛】本题考核知识点:直线与圆的位置关系.解题关键点:理解直线与圆的位置关系的判定方法.二、填空题(共7小题,每小题3分,满分21分)11、【解析】根据题意列出表格或树状图即可解答【详解】解:根据题意画出树状图如下:总共有9种情况,其中两个数字之和为8的有2种情况,故答案为:【点睛】本题考查了概率的求解,解题的关键是画出树状图或列出表格,并熟
16、记概率的计算公式12、2+【解析】试题分析:过P点作PEAB于E,过P点作PCx轴于C,交AB于D,连接PAPEAB,AB=2,半径为2, AE=AB=,PA=2, 根据勾股定理得:PE=1,点A在直线y=x上,AOC=45,DCO=90, ODC=45,OCD是等腰直角三角形, OC=CD=2, PDE=ODC=45,DPE=PDE=45, DE=PE=1, PD=P的圆心是(2,a), a=PD+DC=2+【点睛】本题主要考查的就是垂径定理的应用以及直角三角形勾股定理的应用,属于中等难度的题型解决这个问题的关键就是在于作出辅助线,将所求的线段放入到直角三角形中本题还需要注意的一个隐含条件就
17、是:直线y=x或直线y=-x与x轴所形成的锐角为45,这一个条件的应用也是很重要的13、【解析】根据题意画出图形,由,根据三角形法则,即可求得的长,又由点G是ABC的重心,根据重心的性质,即可求得【详解】如图:BD是ABC的中线,=,=,点G是ABC的重心,=,故答案为: 【点睛】本题考查了三角形的重心的性质:三角形的重心到三角形顶点的距离是它到对边中点的距离的2倍,本题也考查了向量的加法及其几何意义,是基础题目14、1【解析】根据题意找到等量关系x26x+b=(x+a)25,根据系数相等求出a,b,即可解题.【详解】解:由题可知x26x+b=(x+a)25,整理得:x26x+b= x2+2a
18、x+a2-5,即-6=2a,b= a2-5,解得:a=-3,b=4,a+b=1.【点睛】本题考查了配方法的实际应用,属于简单题,找到等量关系求出a,b是解题关键.15、【解析】试题分析:,解得r=考点:弧长的计算16、【解析】试题分析:此题是求阴影部分的面积占正方形面积的几分之几,即为所求概率阴影部分的面积为:3124=6,因为正方形对角线形成4个等腰直角三角形,所以边长是=,这个点取在阴影部分的概率为:6=618=考点:求随机事件的概率17、1【解析】设P(0,b),直线APBx轴,A,B两点的纵坐标都为b,而点A在反比例函数y=的图象上,当y=b,x=-,即A点坐标为(-,b),又点B在反
19、比例函数y=的图象上,当y=b,x=,即B点坐标为(,b),AB=-(-)=,SABC=ABOP=b=1三、解答题(共7小题,满分69分)18、(1)(30010 x)(2)每本书应涨价5元【解析】试题分析:(1)每本涨价1元,则每天就会少售出10本,设每本书上涨了x元,则每天就会少售出10 x本,所以每天可售出书(30010 x)本;(2)根据每本图书的利润每天销售图书的数量=总利润列出方程,解方程即可求解.试题解析:(1)每本书上涨了x元,每天可售出书(30010 x)本故答案为30010 x(2)设每本书上涨了x元(x10),根据题意得:(4030+x)(30010 x)=3750,整理
20、,得:x220 x+75=0,解得:x1=5,x2=15(不合题意,舍去)答:若书店想每天获得3750元的利润,每本书应涨价5元19、(1)详见解析;(2)BD=9.6.【解析】试题分析:(1)连接OB,由垂径定理可得BE=DE,OEBD, ,再由圆周角定理可得 ,从而得到 OBE DBC90,即 ,命题得证.(2)由勾股定理求出OC,再由OBC的面积求出BE,即可得出弦BD的长.试题解析:(1)证明:如下图所示,连接OB. E是弦BD的中点, BEDE,OE BD, BOE A, OBE BOE90. DBC A, BOE DBC, OBE DBC90, OBC90,即BCOB, BC是 O
21、的切线(2)解: OB6,BC8,BCOB, , , ,.点睛:本题主要考查圆中的计算问题,解题的关键在于清楚角度的转换方式和弦长的计算方法.20、 (1) (2) 【解析】【分析】(1)根据关联点的定义逐一进行判断即可得;(2)当时,可以确定此时矩形上的所有点都在抛物线的下方,所以可得,由此可知,从而可得; 由知,分两种情况画出图形进行讨论即可得. 【详解】(1),x=2时,y=1,此时P(2,1),则d=1+2=3,符合定义,是关联点;,x=1时,y=,此时P(1,),则d=+=3,符合定义,是关联点;,x=4时,y=4,此时P(4,4),则d=1+=6,不符合定义,不是关联点;,x=0时
22、,y=0,此时P(0,0),则d=4+5=9,不不符合定义,是关联点,故答案为;(2)当时,此时矩形上的所有点都在抛物线的下方,; 由,如图2所示时,CF最长,当CF=4时,即=4,解得:t=,如图3所示时,DF最长,当DF=4时,即DF=4,解得 t=, 故答案为 【点睛】本题考查了新定义题,二次函数的综合,题目较难,读懂新概念,能灵活应用新概念,结合图形解题是关键.21、(1)50名;(2)16名;见解析;(3)56名【解析】试题分析:根据A等级的人数和百分比求出总人数;根据总人数和A、B、D三个等级的人数求出C等级的人数;利用总人数乘以D等级人数的百分比得出答案试题解析:(1)1020%
23、=50(名)答:本次抽样共抽取了50名学生(2)5010204=16(名)答:测试结果为C等级的学生有16名补全图形如图所示:(3)700(450)=56(名)答:估计该中学八年级700名学生中体能测试为D等级的学生有56名考点:统计图22、(1)详见解析;(2)详见解析.【解析】(1)根据平行线的性质结合角平分线的性质可得出BCA=BAC,进而可得出BA=BC,根据等角的余角相等结合等角对等边,即可得出AB=BE,进而可得出BE=BA=BC,此题得证;(2)根据AC2=DCEC结合ACD=ECA可得出ACDECA,根据相似三角形的性质可得出ADC=EAC=90,进而可得出FDA=FAC=90,结合AFD=CFA可得出AFDCFA,再利用相似三角形的性质可证出AD:AF=AC:FC【详解】(1)DCAB,DCA=BACAC平分BCD,BCA=BAC=DCA,BA=BCBAC+BAE=90,ACB+E =90,BAE=E,AB=BE,BE=BA=BC,B是EC的中点;(2)AC2=DCEC,ACD=ECA,ACDECA,ADC=EAC=90,FDA=FAC=90又AFD=CFA,AFDCFA,AD:AF=AC:FC
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年公司年度工作方案报告
- 关于2025年学校开学活动方案
- 英语教案范文10篇
- 2025年电子光纤窥镜项目可行性研究报告
- 2025年电动自行车柱式电机项目可行性研究报告
- 2025年甲烷分析仪项目可行性研究报告
- 2025年独立袋装沙发座垫项目可行性研究报告
- 2025年牛二层沙发革项目可行性研究报告
- 吉林师范大学博达学院《中国近代经济史》2023-2024学年第二学期期末试卷
- 唐山职业技术学院《建筑经济》2023-2024学年第二学期期末试卷
- 2025年中铁快运股份有限公司招聘(98人)笔试参考题库附带答案详解
- 2025年武汉数学四调试题及答案
- 职业病防护设施与个体防护用品的使用和维护
- 绿化养护服务投标方案(技术标)
- TB-T 3356-2021铁路隧道锚杆-PDF解密
- (正式版)HGT 6313-2024 化工园区智慧化评价导则
- 酒店改造工程施工组织方案
- 2022年医疗器械公司年度培训计划及培训记录
- 枣庄防备煤矿有限公司“7.6”重大火灾事故详细分析
- 建筑装饰专业中级职称理论考试题库
- 工程联系单表格(模板)
评论
0/150
提交评论