2022年靖江外国语学校中考冲刺卷数学试题含解析_第1页
2022年靖江外国语学校中考冲刺卷数学试题含解析_第2页
2022年靖江外国语学校中考冲刺卷数学试题含解析_第3页
2022年靖江外国语学校中考冲刺卷数学试题含解析_第4页
2022年靖江外国语学校中考冲刺卷数学试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022中考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1某市2010年元旦这天的最高气温

2、是8,最低气温是2,则这天的最高气温比最低气温高()A10B10C6D62在17月份,某种水果的每斤进价与出售价的信息如图所示,则出售该种水果每斤利润最大的月份是( )A3月份B4月份C5月份D6月份3如图,ABC中,AB=5,BC=3,AC=4,以点C为圆心的圆与AB相切,则C的半径为( )A2.3B2.4C2.5D2.64的倒数是( )AB3CD5在平面直角坐标系中,将抛物线绕着它与轴的交点旋转180,所得抛物线的解析式是( )ABCD6下列实数中是无理数的是()ABCD7下列几何体中,俯视图为三角形的是( )ABCD8下列运算,结果正确的是()Am2+m2=m4B2m2nmn=4mC(3

3、mn2)2=6m2n4D(m+2)2=m2+49下列运算错误的是()A(m2)3=m6 Ba10a9=a Cx3x5=x8 Da4+a3=a710已知一组数据1、2、3、x、5,它们的平均数是3,则这一组数据的方差为()A1B2C3D4二、填空题(共7小题,每小题3分,满分21分)11如图,在ABC中,ABAC,D、E、F分别为AB、BC、AC的中点,则下列结论:ADFFEC;四边形ADEF为菱形;其中正确的结论是_.(填写所有正确结论的序号)12函数的定义域是_.13二次函数的图象与y轴的交点坐标是_14若关于x的方程(k1)x24x5=0有实数根,则k的取值范围是_15规定:x表示不大于x

4、的最大整数,(x)表示不小于x的最小整数,x)表示最接近x的整数(xn+0.5,n为整数),例如:1.3=1,(1.3)=3,1.3)=1则下列说法正确的是_(写出所有正确说法的序号)当x=1.7时,x+(x)+x)=6;当x=1.1时,x+(x)+x)=7;方程4x+3(x)+x)=11的解为1x1.5;当1x1时,函数y=x+(x)+x的图象与正比例函数y=4x的图象有两个交点16如图,点D在O的直径AB的延长线上,点C在O上,且AC=CD,ACD=120,CD是O的切线:若O的半径为2,则图中阴影部分的面积为_17一组“数值转换机”按下面的程序计算,如果输入的数是36,则输出的结果为10

5、6,要使输出的结果为127,则输入的最小正整数是_三、解答题(共7小题,满分69分)18(10分)如图,已知ABC中,AB=BC=5,tanABC=求边AC的长;设边BC的垂直平分线与边AB的交点为D,求的值19(5分)抛一枚质地均匀六面分别刻有1、2、3、4、5、6点的正方体骰子两次,若记第一次出现的点数为a,第二次出现的点数为b,则以方程组的解为坐标的点在第四象限的概率为_20(8分)李宁准备完成题目;解二元一次方程组,发现系数“”印刷不清楚他把“”猜成3,请你解二元一次方程组;张老师说:“你猜错了”,我看到该题标准答案的结果x、y是一对相反数,通过计算说明原题中“”是几?21(10分)如

6、图1,B(2m,0),C(3m,0)是平面直角坐标系中两点,其中m为常数,且m0,E(0,n)为y轴上一动点,以BC为边在x轴上方作矩形ABCD,使AB=2BC,画射线OA,把ADC绕点C逆时针旋转90得ADC,连接ED,抛物线()过E,A两点(1)填空:AOB= ,用m表示点A的坐标:A( , );(2)当抛物线的顶点为A,抛物线与线段AB交于点P,且时,DOE与ABC是否相似?说明理由;(3)若E与原点O重合,抛物线与射线OA的另一个交点为点M,过M作MNy轴,垂足为N:求a,b,m满足的关系式;当m为定值,抛物线与四边形ABCD有公共点,线段MN的最大值为10,请你探究a的取值范围22(

7、10分)石狮泰禾某童装专卖店在销售中发现,一款童装每件进价为80元,销售价为120元时,每天可售出20件,为了迎接“十一”国庆节,商店决定采取适当的降价措施,以扩大销售量,增加利润,经市场调查发现,如果每件童装降价1元,那么平均可多售出2件设每件童装降价x元时,每天可销售_ 件,每件盈利_ 元;(用x的代数式表示)每件童装降价多少元时,平均每天赢利1200元要想平均每天赢利2000元,可能吗?请说明理由23(12分)如图1,经过原点O的抛物线y=ax2+bx(a0)与x轴交于另一点A(,0),在第一象限内与直线y=x交于点B(2,t)(1)求这条抛物线的表达式;(2)在第四象限内的抛物线上有一

8、点C,满足以B,O,C为顶点的三角形的面积为2,求点C的坐标;(3)如图2,若点M在这条抛物线上,且MBO=ABO,在(2)的条件下,是否存在点P,使得POCMOB?若存在,求出点P的坐标;若不存在,请说明理由24(14分)经过校园某路口的行人,可能左转,也可能直行或右转假设这三种可能性相同,现有小明和小亮两人经过该路口,请用列表法或画树状图法,求两人之中至少有一人直行的概率参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解析】用最高气温减去最低气温,再根据有理数的减法运算法则“减去一个数等于加上这个数的相反数”即可求得答案.【详解】8-(-2)=8+2=10即这天

9、的最高气温比最低气温高10故选A2、B【解析】解:各月每斤利润:3月:7.5-4.53元,4月:6-2.53.5元,5月:4.5-22.5元,6月:3-1.51.5元,所以,4月利润最大,故选B3、B【解析】试题分析:在ABC中,AB=5,BC=3,AC=4,AC2+BC2=32+42=52=AB2,C=90,如图:设切点为D,连接CD,AB是C的切线,CDAB,SABC=ACBC=ABCD,ACBC=ABCD,即CD=,C的半径为,故选B考点:圆的切线的性质;勾股定理4、A【解析】解:的倒数是故选A【点睛】本题考查倒数,掌握概念正确计算是解题关键5、B【解析】把抛物线y=x2+2x+3整理成

10、顶点式形式并求出顶点坐标,再求出与y轴的交点坐标,然后求出所得抛物线的顶点,再利用顶点式形式写出解析式即可【详解】解:y=x2+2x+3=(x+1)2+2,原抛物线的顶点坐标为(-1,2),令x=0,则y=3,抛物线与y轴的交点坐标为(0,3),抛物线绕与y轴的交点旋转180,所得抛物线的顶点坐标为(1,4),所得抛物线的解析式为:y=-x2+2x+3或y=-(x-1)2+4故选:B【点睛】本题考查了二次函数图象与几何变换,利用顶点的变化确定函数解析式的变化可以使求解更简便6、B【解析】无理数就是无限不循环小数理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称即有限小数和无

11、限循环小数是有理数,而无限不循环小数是无理数由此即可判定选择项【详解】A、是分数,属于有理数;B、是无理数;C、=3,是整数,属于有理数;D、-是分数,属于有理数;故选B【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:,2等;开方开不尽的数;以及像0.1010010001,等有这样规律的数7、C【解析】俯视图是从上面所看到的图形,可根据各几何体的特点进行判断【详解】A.圆锥的俯视图是圆,中间有一点,故本选项不符合题意,B.几何体的俯视图是长方形,故本选项不符合题意,C.三棱柱的俯视图是三角形,故本选项符合题意,D.圆台的俯视图是圆环,故本选项不符合题意,故选C.【点睛】此题主

12、要考查了由几何体判断三视图,正确把握观察角度是解题关键8、B【解析】直接利用积的乘方运算法则、合并同类项法则和单项式除以单项式运算法则计算得出答案【详解】A. m2+m2=2m2,故此选项错误;B. 2m2nmn=4m,正确;C. (3mn2)2=9m2n4,故此选项错误;D. (m+2)2=m2+4m+4,故此选项错误.故答案选:B.【点睛】本题考查了乘方运算法则、合并同类项法则和单项式除以单项式运算法则,解题的关键是熟练的掌握乘方运算法则、合并同类项法则和单项式除以单项式运算法则.9、D【解析】【分析】利用合并同类项法则,单项式乘以单项式法则,同底数幂的乘法、除法的运算法则逐项进行计算即可

13、得.【详解】A、(m2)3=m6,正确;B、a10a9=a,正确;C、x3x5=x8,正确;D、a4+a3=a4+a3,错误,故选D【点睛】本题考查了合并同类项、单项式乘以单项式、同底数幂的乘除法,熟练掌握各运算的运算法则是解题的关键.10、B【解析】先由平均数是3可得x的值,再结合方差公式计算【详解】数据1、2、3、x、5的平均数是3,=3,解得:x=4,则数据为1、2、3、4、5,方差为(1-3)2+(2-3)2+(3-3)2+(4-3)2+(5-3)2=2,故选B【点睛】本题主要考查算术平均数和方差,解题的关键是熟练掌握平均数和方差的定义二、填空题(共7小题,每小题3分,满分21分)11

14、、【解析】根据三角形的中位线定理可得出AD=FE、AF=FC、DF=EC,进而可证出ADFFEC(SSS),结论正确;根据三角形中位线定理可得出EFAB、EF=AD,进而可证出四边形ADEF为平行四边形,由AB=AC结合D、F分别为AB、AC的中点可得出AD=AF,进而可得出四边形ADEF为菱形,结论正确;根据三角形中位线定理可得出DFBC、DF=BC,进而可得出ADFABC,再利用相似三角形的性质可得出,结论正确此题得解【详解】解:D、E、F分别为AB、BC、AC的中点,DE、DF、EF为ABC的中位线,AD=AB=FE,AF=AC=FC,DF=BC=EC在ADF和FEC中,ADFFEC(S

15、SS),结论正确;E、F分别为BC、AC的中点,EF为ABC的中位线,EFAB,EF=AB=AD,四边形ADEF为平行四边形AB=AC,D、F分别为AB、AC的中点,AD=AF,四边形ADEF为菱形,结论正确;D、F分别为AB、AC的中点,DF为ABC的中位线,DFBC,DF=BC,ADFABC,结论正确故答案为【点睛】本题考查了菱形的判定与性质、全等三角形的判定与性质、相似三角形的判定与性质以及三角形中位线定理,逐一分析三条结论的正误是解题的关键12、x-1【解析】分析:根据二次根式的性质,被开方数大于或等于0,可以求出x的范围详解:根据题意得:x+10,解得:x1 故答案为x1点睛:考查了

16、函数的定义域,函数的定义域一般从三个方面考虑: (1)当函数表达式是整式时,定义域可取全体实数; (2)当函数表达式是分式时,考虑分式的分母不能为0; (1)当函数表达式是二次根式时,被开方数非负13、【解析】求出自变量x为1时的函数值即可得到二次函数的图象与y轴的交点坐标【详解】把代入得:,该二次函数的图象与y轴的交点坐标为,故答案为【点睛】本题考查了二次函数图象上点的坐标特征,在y轴上的点的横坐标为114、【解析】当k1=0,即k=1时,原方程为4x5=0,解得:x=,k=1符合题意;当k10,即k1时,有,解得:k且k1.综上可得:k的取值范围为k.故答案为k.15、【解析】试题解析:当

17、x=1.7时,x+(x)+x)=1.7+(1.7)+1.7)=1+1+1=5,故错误;当x=1.1时,x+(x)+x)=1.1+(1.1)+1.1)=(3)+(1)+(1)=7,故正确;当1x1.5时,4x+3(x)+x)=41+31+1=4+6+1=11,故正确;1x1时,当1x0.5时,y=x+(x)+x=1+0+x=x1,当0.5x0时,y=x+(x)+x=1+0+x=x1,当x=0时,y=x+(x)+x=0+0+0=0,当0 x0.5时,y=x+(x)+x=0+1+x=x+1,当0.5x1时,y=x+(x)+x=0+1+x=x+1,y=4x,则x1=4x时,得x=;x+1=4x时,得x

18、=;当x=0时,y=4x=0,当1x1时,函数y=x+(x)+x的图象与正比例函数y=4x的图象有三个交点,故错误,故答案为考点:1.两条直线相交或平行问题;1.有理数大小比较;3.解一元一次不等式组16、 【解析】试题分析:连接OC,求出D和COD,求出边DC长,分别求出三角形OCD的面积和扇形COB的面积,即可求出答案连接OC,AC=CD,ACD=120,CAD=D=30,DC切O于C,OCCD,OCD=90,COD=60,在RtOCD中,OCD=90,D=30,OC=2,CD=2,阴影部分的面积是SOCDS扇形COB=22=2,故答案为2考点:1.等腰三角形性质;2.三角形的内角和定理;

19、3.切线的性质;4.扇形的面积.17、15【解析】分析:设输出结果为y,观察图形我们可以得出x和y的关系式为:,将y的值代入即可求得x的值详解: 当y=127时, 解得:x=43;当y=43时,解得:x=15;当y=15时, 解得 不符合条件则输入的最小正整数是15.故答案为15.点睛:考查一元一次方程的应用,熟练掌握一元一次方程的应用是解题的关键.三、解答题(共7小题,满分69分)18、(1)AC=;(2)【解析】【分析】(1)过A作AEBC,在直角三角形ABE中,利用锐角三角函数定义求出AC的长即可;(2)由DF垂直平分BC,求出BF的长,利用锐角三角函数定义求出DF的长,利用勾股定理求出

20、BD的长,进而求出AD的长,即可求出所求【详解】(1)如图,过点A作AEBC,在RtABE中,tanABC=,AB=5,AE=3,BE=4,CE=BCBE=54=1,在RtAEC中,根据勾股定理得:AC=;(2)DF垂直平分BC,BD=CD,BF=CF=,tanDBF=,DF=,在RtBFD中,根据勾股定理得:BD=,AD=5=,则【点睛】本题考查了解直角三角形的应用,正确添加辅助线、根据边角关系熟练应用三角函数进行解答是解题的关键.19、 【解析】解方程组,根据条件确定a、b的范围,从而确定满足该条件的结果个数,利用古典概率的概率公式求出方程组只有一个解的概率.【详解】,得 若b2a, 即a

21、=2,3,4,5,6 b=4,5,6符合条件的数组有(2,5)(2,6)共有2个,若b2a, 符合条件的数组有(1,1)共有1个,概率p=.故答案为:.【点睛】本题主要考查了古典概率及其概率计算公式的应用.20、(1);(2)-1【解析】(1)+得出4x=-4,求出x,把x的值代入求出y即可;(2)把x=-y代入x-y=4求出y,再求出x,最后把x、y代入求出答案即可【详解】解:(1)+得,.将时代入得,.(2)设“”为a,x、y是一对相反数,把x=-y代入x-y=4得:-y-y=4,解得:y=-2,即x=2,所以方程组的解是,代入ax+y=-8得:2a-2=-8,解得:a=-1,即原题中“”

22、是-1【点睛】本题考查了解二元一次方程组,也考查了二元一次方程组的解,能得出关于a的方程是解(2)的关键21、(1)45;(m,m);(2)相似;(3);【解析】试题分析:(1)由B与C的坐标求出OB与OC的长,进一步表示出BC的长,再证三角形AOB为等腰直角三角形,即可求出所求角的度数;由旋转的性质得,即可确定出A坐标;(2)DOEABC表示出A与B的坐标,由,表示出P坐标,由抛物线的顶点为A,表示出抛物线解析式,把点E坐标代入即可得到m与n的关系式,利用三角形相似即可得证;(3)当E与原点重合时,把A与E坐标代入,整理即可得到a,b,m的关系式;抛物线与四边形ABCD有公共点,可得出抛物线

23、过点C时的开口最大,过点A时的开口最小,分两种情况考虑:若抛物线过点C(3m,0),此时MN的最大值为10,求出此时a的值;若抛物线过点A(2m,2m),求出此时a的值,即可确定出抛物线与四边形ABCD有公共点时a的范围试题解析:(1)B(2m,0),C(3m,0),OB=2m,OC=3m,即BC=m,AB=2BC,AB=2m=0B,ABO=90,ABO为等腰直角三角形,AOB=45,由旋转的性质得:OD=DA=m,即A(m,m);故答案为45;m,m;(2)DOEABC,理由如下:由已知得:A(2m,2m),B(2m,0),P(2m,m),A为抛物线的顶点,设抛物线解析式为,抛物线过点E(0

24、,n),即m=2n,OE:OD=BC:AB=1:2,EOD=ABC=90,DOEABC;(3)当点E与点O重合时,E(0,0),抛物线过点E,A,整理得:,即;抛物线与四边形ABCD有公共点,抛物线过点C时的开口最大,过点A时的开口最小,若抛物线过点C(3m,0),此时MN的最大值为10,a(3m)2(1+am)3m=0,整理得:am=,即抛物线解析式为,由A(2m,2m),可得直线OA解析式为y=x,联立抛物线与直线OA解析式得:,解得:x=5m,y=5m,即M(5m,5m),令5m=10,即m=2,当m=2时,a=;若抛物线过点A(2m,2m),则,解得:am=2,m=2,a=1,则抛物线

25、与四边形ABCD有公共点时a的范围为考点:1二次函数综合题;2压轴题;3探究型;4最值问题22、(1)(20+2x),(40 x);(2)每件童装降价20元或10元,平均每天赢利1200元;(3)不可能做到平均每天盈利2000元【解析】(1)、根据销售量=原销售量+因价格下降而增加的数量;每件利润=原售价进价降价,列式即可;(2)、根据总利润=单件利润数量,列出方程即可;(3)、根据(2)中的相关关系方程,判断方程是否有实数根即可【详解】(1)、设每件童装降价x元时,每天可销售20+2x件,每件盈利40-x元,故答案为(20+2x),(40-x);(2)、根据题意可得:(20+2x)(40 x

26、)=1200,解得:即每件童装降价10元或20元时,平均每天盈利1200元;(3)、(20+2x)(40 x)=2000, , 此方程无解, 不可能盈利2000元【点睛】本题主要考查的是一元二次方程的实际应用问题,属于中等难度题型解决这个问题的关键就是要根据题意列出方程23、(1)y=2x23x;(2)C(1,1);(3)(,)或(,)【解析】(1)由直线解析式可求得B点坐标,由A、B坐标,利用待定系数法可求得抛物线的表达式;(2)过C作CDy轴,交x轴于点E,交OB于点D,过B作BFCD于点F,可设出C点坐标,利用C点坐标可表示出CD的长,从而可表示出BOC的面积,由条件可得到关于C点坐标的

27、方程,可求得C点坐标;(3)设MB交y轴于点N,则可证得ABONBO,可求得N点坐标,可求得直线BN的解析式,联立直线BM与抛物线解析式可求得M点坐标,过M作MGy轴于点G,由B、C的坐标可求得OB和OC的长,由相似三角形的性质可求得的值,当点P在第一象限内时,过P作PHx轴于点H,由条件可证得MOGPOH,由的值,可求得PH和OH,可求得P点坐标;当P点在第三象限时,同理可求得P点坐标【详解】(1)B(2,t)在直线y=x上,t=2,B(2,2),把A、B两点坐标代入抛物线解析式可得:,解得:,抛物线解析式为;(2)如图1,过C作CDy轴,交x轴于点E,交OB于点D,过B作BFCD于点F,点C是抛物线上第四象限的点,可设C(t,2t23t),则E(t,0),D(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论