下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、13.3.1 等腰三角形(第一课时)教学目标1.知识与技能 理解并掌握等腰三角形的定义,探索等腰三角形的性质,能够用等腰三角形的性质解决相应的数学问题。2.过程与方法 在探索等腰三角形的性质的过程中体会知识间的关系,感受数学与生活的联系。3.情感、态度与价值观 培养学生分析问题与解决问题的能力,使学生养成良好的学习习惯。教学重点: 1、等腰三角形的概念及性质; 2、等腰三角形性质的应用。教学难点:等腰三角形“三线合一”的性质的理解及其应用。教学过程一、创设情境前面的学习中,认识了轴对称图形,探究了轴对称的性质。这节课从轴对称的角度来认识一些我们熟悉的几何图形。运用多媒体出示几张生活中含有三角形
2、的图片。大家一起来研究:三角形是轴对称图形吗?什么样的三角形是轴对称图形?二、自主探究(分小组活动)活动A:把一张长方形纸对折,沿着折痕处剪去一个角,再把它展开,得到一个三角形,结合实际操作与课件的演示,此三角形有何特点?活动B: 画一画,量一量(1)作一条直线L,在L上取点A,在L外取点B,作出点B关于直线L的对称点C,连结AB、BC、CA,则可得到一个ABC。(2)用刻度尺量一量三角形的两边AB、AC,看它们的长度有何关系?三、互动探究探究1:实践观察,认识等腰三角形(结合课件)以上活动所得三角形的两边相等吗?此三角形称为 。小结:填出等腰三角形各部分名称。探究2:等腰三角形的性质问题1等
3、腰三角形是轴对称图形吗?请找出它的对称轴。问题2折叠或量,看看等腰三角形的两底角有什么关系?问题3顶角的平分线所在的直线是等腰三角形的对称轴吗?问题4底边上的中线所在的直线是等腰三角形的对称轴吗?底边上的高所在的直线呢?1)学生通过刚才自主探究,大胆猜想以上问题的结果。2)教师用多媒体上的几何画板直观演示并引导学生观察等腰三角形的性质。(对称性,等边对等角,“三线合一”)ABCDEFABCD(E、F)使AB=AC小结:等腰三角形的性质:(1)等腰三角形的两个底角 ,简写成“ ”;(2)等腰三角形的 , , 互相重合(通常简称“三线合一”)。3、你能证明以上性质吗?问题(1)性质1(等腰三角形的
4、两个底角相等)的条件和结论分别是什么? (2)怎样用数学符号表达条件和结论?ABCD 已知:如下图,已知ABC中,AB=AC,AD是底边上的中线。求证: B=C;AD平分A,ADBC。(3)如何证明? (4)受上述启发,能证明性质2吗?请以“作顶角的角平分线”为辅助线,证明以上性质。(A 组同学完成以下填空,B组独立证明)教师巡视、辅导并作点评。证明:作BAC的平分线AD = 在ABD与ACD中 = (已知) = AD = AD (公共边)ABDACD ( )B = , BD = , ADB = ADB+ADC = ADB=ADC= ,即AD是高。4、提问:作底边上的高,又如何证明?(A组同学讲证明思路,B组同学点评)四、课堂小结:本节课,同学们你知道了等腰三角形哪些性质?(教师引导,结合课件与学生一起回顾)板书设计13.3.1 等腰三角
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 沙石料销售购销协议
- 小产权房房屋交易合同模板
- 廉洁招标保证书
- 高性能笔记本采购合同
- 批发角钢购销合同格式
- 本月嫂服务协议合同
- 清洁劳务分包合同样本
- 生意买卖合同范本
- 室内设计补充协议要素
- 铝合金装饰材料购销合同
- 环境、健康、安全施工管理体系及职责
- 北京市西城区2022-2023学年六年级上学期数学期末试卷(含答案)
- 2024秋期国家开放大学本科《经济学(本)》一平台在线形考(形考任务1至6)试题及答案
- 抵押贷款行业可行性分析报告
- 小品剧本《钱多多银行》台词完整版今夜现场秀佟铭心
- MOOC 微观经济学-浙江大学 中国大学慕课答案
- 2024年建筑业10项新技术
- (2024年)剪映入门教程课件
- 高中生物 人教版 选修二《生态系统及其稳定性》 《生态系统及其稳定性》单元教学设计
- 四年级上册道法知识点汇总
- 女性主义视角下《地下铁道》中科拉命运的解读[精选]
评论
0/150
提交评论