




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022中考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(共10小题,每小题3分,共30分)1如图,在RtABC中,AB=9,BC=6,B=90,将ABC折叠,使A点与BC的中点D重合,折痕为MN,则线段BN的长为( )A52B53C4D52关于x的一元二次方程x2-2x-(m-1)=0有两个不相等的实数根,则实数m的取
2、值范围是()A且BC且D3如图,已知A、B两点的坐标分别为(2,0)、(0,1),C 的圆心坐标为(0,1),半径为1若D是C上的一个动点,射线AD与y轴交于点E,则ABE面积的最大值是A3BCD44如图,已知AB是O的直径,弦CDAB于E,连接BC、BD、AC,下列结论中不一定正确的是()AACB=90BOE=BECBD=BCD5若实数m满足,则下列对m值的估计正确的是()A2m1B1m0C0m1D1m26平面上直线a、c与b相交(数据如图),当直线c绕点O旋转某一角度时与a平行,则旋转的最小度数是( )A60B50C40D307如图,PA和PB是O的切线,点A和B是切点,AC是O的直径,已
3、知P40,则ACB的大小是( )A60B65C70D758如图是某个几何体的展开图,该几何体是()A三棱柱B三棱锥C圆柱D圆锥9某城市几条道路的位置关系如图所示,已知ABCD,AE与AB的夹角为48,若CF与EF的长度相等,则C的度数为()A48B40C30D2410已知常数k0,b0,则函数y=kx+b,的图象大致是下图中的()ABCD二、填空题(本大题共6个小题,每小题3分,共18分)11因式分解:2m28n2= 12有一组数据:3,a,4,6,7,它们的平均数是5,则a_,这组数据的方差是_13如图,在中,于点,于点,为边的中点,连接,则下列结论:,为等边三角形,当时,.请将正确结论的序
4、号填在横线上_. 14如图,四边形ABCD内接于O,AB是O的直径,过点C作O的切线交AB的延长线于点P,若P40,则ADC_15如图,在ABC中,AB=BC,ABC=110,AB的垂直平分线DE交AC于点D,连接BD,则ABD= _16如图,将一块含有30角的直角三角板的两个顶点叠放在长方形的两条对边上,如果1=27,那么2=_三、解答题(共8题,共72分)17(8分) “低碳生活,绿色出行”是我们倡导的一种生活方式,有关部门抽样调查了某单位员工上下班的交通方式,绘制了两幅统计图:(1)样本中的总人数为人;扇形统计十图中“骑自行车”所在扇形的圆心角为度;(2)补全条形统计图;(3)该单位共有
5、1000人,积极践行这种生活方式,越来越多的人上下班由开私家车改为骑自行车若步行,坐公交车上下班的人数保持不变,问原来开私家车的人中至少有多少人改为骑自行车,才能使骑自行车的人数不低于开私家车的人数?18(8分)如图,AOB=90,反比例函数y=(x0)的图象过点A(1,a),反比例函数y=(k0,x0)的图象过点B,且ABx轴(1)求a和k的值;(2)过点B作MNOA,交x轴于点M,交y轴于点N,交双曲线y=于另一点C,求OBC的面积19(8分)如图,是的外接圆,是的直径,过圆心的直线于,交于,是的切线,为切点,连接,(1)求证:直线为的切线;(2)求证:;(3)若,求的长20(8分)(1)
6、如图1,在矩形ABCD中,AB2,BC5,MPN90,且MPN的直角顶点在BC边上,BP1特殊情形:若MP过点A,NP过点D,则 类比探究:如图2,将MPN绕点P按逆时针方向旋转,使PM交AB边于点E,PN交AD边于点F,当点E与点B重合时,停止旋转在旋转过程中,的值是否为定值?若是,请求出该定值;若不是,请说明理由(2)拓展探究:在RtABC中,ABC90,ABBC2,ADAB,A的半径为1,点E是A上一动点,CFCE交AD于点F请直接写出当AEB为直角三角形时的值21(8分)如图,ABC中,AB=AC,以AB为直径的O与BC相交于点D,与CA的延长线相交于点E,过点D作DFAC于点F(1)
7、试说明DF是O的切线;(2)若AC=3AE,求tanC22(10分)如图,在ABC中,ABAC,点D在边AC上(1)作ADE,使ADEACB,DE交AB于点E;(尺规作图,保留作图痕迹,不写作法)(2)若BC5,点D是AC的中点,求DE的长23(12分)某水果批发市场香蕉的价格如下表购买香蕉数(千克)不超过20千克20千克以上但不超过40千克40千克以上每千克的价格6元5元4元张强两次共购买香蕉50千克,已知第二次购买的数量多于第一次购买的数量,共付出264元,请问张强第一次,第二次分别购买香蕉多少千克?24如图,AB为半圆O的直径,AC是O的一条弦,D为的中点,作DEAC,交AB的延长线于点
8、F,连接DA求证:EF为半圆O的切线;若DADF6,求阴影区域的面积(结果保留根号和)参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】设BN=x,则由折叠的性质可得DN=AN=9-x,根据中点的定义可得BD=3,在RtBND中,根据勾股定理可得关于x的方程,解方程即可求解【详解】设BN=x,则AN=9-x.由折叠的性质,得DN=AN=9-x.因为点D是BC的中点,所以BD=3.在RtNBD中,由勾股定理,得BN2+BD2=DN2,即x2+32=9-x2,解得x=4,故线段BN的长为4.故选C.【点睛】此题考查了折叠的性质,勾股定理,中点的定义以及方程思想,熟练掌握折叠的性质
9、及勾股定理是解答本题的关键2、A【解析】根据一元二次方程的系数结合根的判别式1,即可得出关于m的一元一次不等式,解之即可得出实数m的取值范围【详解】关于x的一元二次方程x22x(m1)=1有两个不相等的实数根,=(2)241(m1)=4m1,m1故选B【点睛】本题考查了根的判别式,牢记“当1时,方程有两个不相等的实数根”是解题的关键3、B【解析】试题分析:解:当射线AD与C相切时,ABE面积的最大连接AC,AOC=ADC=90,AC=AC,OC=CD,RtAOCRtADC,AD=AO=2,连接CD,设EF=x,DE2=EFOE,CF=1,DE=,CDEAOE,=,即=,解得x=,SABE=故选
10、B考点:1切线的性质;2三角形的面积4、B【解析】根据垂径定理及圆周角定理进行解答即可【详解】AB是O的直径,ACB=90,故A正确;点E不一定是OB的中点,OE与BE的关系不能确定,故B错误;ABCD,AB是O的直径,BD=BC,故C正确;,故D正确故选B【点睛】本题考查的是垂径定理,熟知平分弦的直径平分这条弦,并且平分弦所对的两条弧是解答此题的关键5、A【解析】试题解析:,m2+2+=0,m2+2=-,方程的解可以看作是函数y=m2+2与函数y=-,作函数图象如图,在第二象限,函数y=m2+2的y值随m的增大而减小,函数y=-的y值随m的增大而增大,当m=-2时y=m2+2=4+2=6,y
11、=-=-=2,62,交点横坐标大于-2,当m=-1时,y=m2+2=1+2=3,y=-=-=4,34,交点横坐标小于-1,-2m-1故选A考点:1.二次函数的图象;2.反比例函数的图象6、C【解析】先根据平角的定义求出1的度数,再由平行线的性质即可得出结论【详解】解:118010080,ac,180806040故选:C【点睛】本题考查的是平行线的性质,用到的知识点为:两直线平行,同旁内角互补7、C【解析】试题分析:连接OB,根据PA、PB为切线可得:OAP=OBP=90,根据四边形AOBP的内角和定理可得AOB=140,OC=OB,则C=OBC,根据AOB为OBC的外角可得:ACB=1402=
12、70.考点:切线的性质、三角形外角的性质、圆的基本性质.8、A【解析】侧面为长方形,底面为三角形,故原几何体为三棱柱.【详解】解:观察图形可知,这个几何体是三棱柱.故本题选择A.【点睛】会观察图形的特征,依据侧面和底面的图形确定该几何体是解题的关键.9、D【解析】解:ABCD,1=BAE=48CF=EF,C=E1=C+E,C=1=48=24故选D点睛:本题考查了等腰三角形的性质,平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等10、D【解析】当k0,b0时,直线经过一、二、四象限,双曲线在二、四象限,由此确定正确的选项【详解】 解:当k0,b0时,直线与y
13、轴交于正半轴,且y随x的增大而减小,直线经过一、二、四象限,双曲线在二、四象限故选D【点睛】本题考查了一次函数、反比例函数的图象与性质关键是明确系数与图象的位置的联系二、填空题(本大题共6个小题,每小题3分,共18分)11、2(m+2n)(m2n)【解析】试题分析:根据因式分解法的步骤,有公因式的首先提取公因式,可知首先提取系数的最大公约数2,进一步发现提公因式后,可以用平方差公式继续分解解:2m28n2,=2(m24n2),=2(m+2n)(m2n)考点:提公因式法与公式法的综合运用12、5 1 【解析】一组数据:3,a,4,6,7,它们的平均数是5,解得,1.故答案为5,1.13、【解析】
14、根据直角三角形斜边上的中线等于斜边的一半可判断;先证明ABMACN,再根据相似三角形的对应边成比例可判断;先根据直角三角形两锐角互余的性质求出ABM=ACN=30,再根据三角形的内角和定理求出BCN+CBM=60,然后根据三角形的一个外角等于与它不相邻的两个内角的和求出BPN+CPM=120,从而得到MPN=60,又由得PM=PN,根据有一个角是60的等腰三角形是等边三角形可判断;当ABC=45时,BCN=45,进而判断【详解】BMAC于点M,CNAB于点N,P为BC边的中点,PM=BC,PN=BC,PM=PN,正确;在ABM与ACN中,A=A,AMB=ANC=90,ABMACN,错误;A=6
15、0,BMAC于点M,CNAB于点N,ABM=ACN=30,在ABC中,BCN+CBM=180-60-302=60,点P是BC的中点,BMAC,CNAB,PM=PN=PB=PC,BPN=2BCN,CPM=2CBM,BPN+CPM=2(BCN+CBM)=260=120,MPN=60,PMN是等边三角形,正确;当ABC=45时,CNAB于点N,BNC=90,BCN=45,P为BC中点,可得BC=PB=PC,故正确所以正确的选项有:故答案为【点睛】本题主要考查了直角三角形斜边的中线等于斜边的一半的性质,相似三角形、等边三角形、等腰直角三角形的判定与性质,等腰三角形三线合一的性质,仔细分析图形并熟练掌握
16、性质是解题的关键14、115【解析】根据过C点的切线与AB的延长线交于P点,P=40,可以求得OCP和OBC的度数,又根据圆内接四边形对角互补,可以求得D的度数,本题得以解决【详解】解:连接OC,如右图所示,由题意可得,OCP=90,P=40,COB=50,OC=OB,OCB=OBC=65,四边形ABCD是圆内接四边形,D+ABC=180,D=115,故答案为:115【点睛】本题考查切线的性质、圆内接四边形,解题的关键是明确题意,找出所求问题需要的条件15、1【解析】在ABC中,AB=BC,ABC=110,A=C=1,AB的垂直平分线DE交AC于点D,AD=BD,ABD=A=1;故答案是116
17、、57.【解析】根据平行线的性质和三角形外角的性质即可求解.【详解】由平行线性质及外角定理,可得21+30=27+30=57.【点睛】本题考查平行线的性质及三角形外角的性质.三、解答题(共8题,共72分)17、 (1) 80、72;(2) 16人;(3) 50人【解析】(1) 用步行人数除以其所占的百分比即可得到样本总人数:810%=80(人);用总人数乘以开私家车的所占百分比即可求出,即 m=8025%=20;用3600乘以骑自行车所占的百分比即可求出其所在扇形的圆心角:360(1-10%-25%-45%)=.(2) 根据扇形统计图算出骑自行车的所占百分比, 再用总人数乘以该百分比即可求出骑
18、自行车的人数, 补全条形图即可(3) 依题意设原来开私家车的人中有x人改为骑自行车, 用x分别表示改变出行方式后的骑自行车和开私家车的人数, 根据题意列出一元一次不等式, 解不等式即可【详解】解:(1)样本中的总人数为810%=80人,骑自行车的百分比为1(10%+25%+45%)=20%,扇形统计十图中“骑自行车”所在扇形的圆心角为36020%=72(2)骑自行车的人数为8020%=16人,补全图形如下:(3)设原来开私家车的人中有x人改骑自行车,由题意,得:1000(110%25%45%)+x100025%x,解得:x50,原来开私家车的人中至少有50人改为骑自行车,才能使骑自行车的人数不
19、低于开私家车的人数【点睛】本题主要考查统计图表和一元一次不等式的应用。18、(1)a=2,k=8(2) =1.【解析】分析:(1)把A(-1,a)代入反比例函数得到A(-1,2),过A作AEx轴于E,BFx轴于F,根据相似三角形的性质得到B(4,2),于是得到k=42=8;(2)求的直线AO的解析式为y=-2x,设直线MN的解析式为y=-2x+b,得到直线MN的解析式为y=-2x+10,解方程组得到C(1,8),于是得到结论详解:(1)反比例函数y=(x0)的图象过点A(1,a),a=2,A(1,2),过A作AEx轴于E,BFx轴于F,AE=2,OE=1,ABx轴,BF=2,AOB=90,EA
20、O+AOE=AOE+BOF=90,EAO=BOF,AEOOFB,OF=4,B(4,2),k=42=8;(2)直线OA过A(1,2),直线AO的解析式为y=2x,MNOA,设直线MN的解析式为y=2x+b,2=24+b,b=10,直线MN的解析式为y=2x+10,直线MN交x轴于点M,交y轴于点N,M(5,0),N(0,10),解得,C(1,8),OBC的面积=SOMNSOCNSOBM=51010152=1点睛:本题考查了一次函数图象上点的坐标特征,反比例函数与一次函数交点问题,相似三角形的判定和性质,求函数的解析式,三角形的面积的计算,正确的作出辅助线是解题的关键19、(1)证明见解析;(2)
21、证明见解析;(3)1【解析】(1)连接OA,由OP垂直于AB,利用垂径定理得到D为AB的中点,即OP垂直平分AB,可得出AP=BP,再由OA=OB,OP=OP,利用SSS得出三角形AOP与三角形BOP全等,由PA为圆的切线,得到OA垂直于AP,利用全等三角形的对应角相等及垂直的定义得到OB垂直于BP,即PB为圆O的切线;(2)由一对直角相等,一对公共角,得出三角形AOD与三角形OAP相似,由相似得比例,列出关系式,由OA为EF的一半,等量代换即可得证【详解】(1)连接OB,PB是O的切线,PBO=90OA=OB,BAPO于D,AD=BD,POA=POB又PO=PO,PAOPBO PAO=PBO
22、=90,直线PA为O的切线(2)由(1)可知,=90,即,是直径,是半径,整理得;(3)是中点,是中点,是的中位线,是直角三角形,在中,则,、是半径,在中,由勾股定理得:,即,解得:或(舍去),【点睛】本题考查了切线的判定与性质,相似及全等三角形的判定与性质以及锐角三角函数关系等知识,熟练掌握切线的判定与性质是解本题的关键20、 (1) 特殊情形:;类比探究: 是定值,理由见解析;(2) 或【解析】(1)证明,即可求解;(2)点E与点B重合时,四边形EBFA为矩形,即可求解;(3)分时、时,两种情况分别求解即可【详解】解:(1),故答案为;(2)点E与点B重合时,四边形EBFA为矩形,则为定值
23、;(3)当时,如图3,过点E、F分别作直线BC的垂线交于点G,H,由(1)知:,同理, .则,则 ;当时,如图4,则,则,则 ,故或 【点睛】本题考查的圆知识的综合运用,涉及到解直角三角形的基本知识,其中(3),要注意分类求解,避免遗漏21、(1)详见解析;(2)【解析】(1)连接OD,根据等边对等角得出B=ODB,B=C,得出ODB=C,证得ODAC,证得ODDF,从而证得DF是O的切线;(2)连接BE,AB是直径,AEB=90,根据勾股定理得出BE=2AE,CE=4AE,然后在RtBEC中,即可求得tanC的值【详解】(1)连接OD,OB=OD,B=ODB,AB=AC,B=C,ODB=C,
24、ODAC,DFAC,ODDF,DF是O的切线;(2)连接BE,AB是直径,AEB=90,AB=AC,AC=3AE,AB=3AE,CE=4AE,BE=,在RTBEC中,tanC=22、(1)作图见解析;(2)【解析】(1)根据作一个角等于已知角的步骤解答即可;(2)由作法可得DEBC,又因为D是AC的中点,可证DE为ABC的中位线,从而运用三角形中位线的性质求解【详解】解:(1)如图,ADE为所作;(2)ADE=ACB,DEBC,点D是AC的中点,DE为ABC的中位线,DE=BC=23、第一次买14千克香蕉,第二次买36千克香蕉【解析】本题两个等量关系为:第一次买的千克数+第二次买的千克数=50;第一次出的钱数+
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 工业自动化与智能电网的融合探讨
- 工业遗产在旅游业中的利用与发展前景分析
- 工业遗产改造为文化创意产业园的实践案例研究
- 工业设计的趋势与前景分析
- 工业设计创新与趋势分析
- 工作环境改善与团队效率关系研究
- 工厂操作人员必须了解的版本更新质量要求
- 工程物流项目的高效安全管理模式及实施策略探讨
- 市场分析与预测方法在市场营销中的应用
- 工程项目管理中的数据化决策与汇报
- 钻井新工艺新技术课件
- 罐区切水操作规程
- 变更户主情况登记表(填写样式)
- (新版)供电可靠性(初级)理论普考题库及答案汇总-下(判断题)
- 事业单位工勤人员技师考试职业道德复习试题
- 职业安全健康现场检查记录表参考范本
- GA∕T 1699-2019 法庭科学 复制笔迹检验指南
- 杭电 通信电路复习
- 初物管理办法及规定
- 对照品管理SOP双语
- 积雪草提取物对胃粘膜的保护作用及其机制探讨
评论
0/150
提交评论