版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(共10小题,每小题3分,共30分)1下列运算结果正确的是()A3aa=2 B(ab)2=a2b2Ca(a+b)=a2+b D6ab22ab=3b2已知平面内不同的两点A(a+2,4)和B(3,2a+2)到x轴的距离相等,则a的值为( )A3B5C1或3D1或53如图,AD为ABC的中线,点E为AC边的中点,连接DE,则下列结论
2、中不一定成立的是()ADC=DEBAB=2DECSCDE=SABCDDEAB4下列图案中,既是轴对称图形又是中心对称图形的是()ABCD5如图,已知OP平分AOB,AOB60,CP2,CPOA,PDOA于点D,PEOB于点E如果点M是OP的中点,则DM的长是()A2BCD26如图,已知BD与CE相交于点A,EDBC,AB=8,AC=12,AD=6,那么AE的长等于( )A4B9C12D167如图,等腰ABC中,ABAC10,BC6,直线MN垂直平分AB交AC于D,连接BD,则BCD的周长等于()A13B14C15D168如图是由5个大小相同的正方体搭成的几何体,这个几何体的俯视图是()ABCD
3、9如图,等边ABC的边长为4,点D,E分别是BC,AC的中点,动点M从点A向点B匀速运动,同时动点N沿BDE匀速运动,点M,N同时出发且运动速度相同,点M到点B时两点同时停止运动,设点M走过的路程为x,AMN的面积为y,能大致刻画y与x的函数关系的图象是()ABCD10分别写有数字0,1,2,1,3的五张卡片,除数字不同外其他均相同,从中任抽一张,那么抽到负数的概率是( )ABCD二、填空题(本大题共6个小题,每小题3分,共18分)11比较大小: _1(填“”、“”或“”)12同圆中,已知弧AB所对的圆心角是100,则弧AB所对的圆周角是_13若数据2、3、5、3、8的众数是a,则中位数是b,
4、则ab等于_14双察下列等式:,则第n个等式为_(用含n的式子表示)15抛物线yx2+bx+c的部分图象如图所示,则关于x的一元二次方程x2+bx+c0的解为_16如图,ABC内接于O,AB是O的直径,点D在圆O上,BDCD,AB10,AC6,连接OD交BC于点E,DE_三、解答题(共8题,共72分)17(8分)(1)如图1,半径为2的圆O内有一点P,切OP=1,弦AB过点P,则弦AB长度的最大值为_;最小值为 _.图 (2)如图2,ABC是葛叔叔家的菜地示意图,其中ABC=90,AB=80米,BC=60米,现在他利用周边地的情况,把原来的三角形地拓展成符合条件的面积尽可能大、周长尽可能长的四
5、边形地,用来建鱼塘已知葛叔叔想建的鱼塘是四边形ABCD,且满足ADC=60,你认为葛叔叔的想法能实现吗?若能,求出这个四边形鱼塘面积和周长的最大值;若不能,请说明理由图 18(8分)4件同型号的产品中,有1件不合格品和3件合格品从这4件产品中随机抽取1件进行检测,求抽到的是不合格品的概率;从这4件产品中随机抽取2件进行检测,求抽到的都是合格品的概率;在这4件产品中加入x件合格品后,进行如下试验:随机抽取1件进行检测,然后放回,多次重复这个试验,通过大量重复试验后发现,抽到合格品的频率稳定在0.95,则可以推算出x的值大约是多少?19(8分)如图,直线y1=x+4,y2=x+b都与双曲线y=交于
6、点A(1,m),这两条直线分别与x轴交于B,C两点(1)求y与x之间的函数关系式;(2)直接写出当x0时,不等式x+b的解集;(3)若点P在x轴上,连接AP把ABC的面积分成1:3两部分,求此时点P的坐标20(8分)校园手机现象已经受到社会的广泛关注某校的一个兴趣小组对“是否赞成中学生带手机进校园”的问题在该校校园内进行了随机调查并将调查数据作出如下不完整的整理;看法频数频率赞成5无所谓0.1反对400.8(1)本次调查共调查了 人;(直接填空)请把整理的不完整图表补充完整;若该校有3000名学生,请您估计该校持“反对”态度的学生人数21(8分)抛物线y=ax2+bx+3(a0)经过点A(1,
7、0),B(,0),且与y轴相交于点C(1)求这条抛物线的表达式;(2)求ACB的度数;(3)点D是抛物线上的一动点,是否存在点D,使得tanDCB=tanACO若存在,请求出点D的坐标,若不存在,说明理由22(10分)一个口袋中有1个大小相同的小球,球面上分别写有数字1、2、1从袋中随机地摸出一个小球,记录下数字后放回,再随机地摸出一个小球(1)请用树形图或列表法中的一种,列举出两次摸出的球上数字的所有可能结果;(2)求两次摸出的球上的数字和为偶数的概率23(12分)如图所示,点C为线段OB的中点,D为线段OA上一点连结AC、BD交于点P(问题引入)(1)如图1,若点P为AC的中点,求的值温馨
8、提示:过点C作CEAO交BD于点E(探索研究)(2)如图2,点D为OA上的任意一点(不与点A、O重合),求证:(问题解决)(3)如图2,若AO=BO,AOBO,求tanBPC的值24李宁准备完成题目;解二元一次方程组,发现系数“”印刷不清楚他把“”猜成3,请你解二元一次方程组;张老师说:“你猜错了”,我看到该题标准答案的结果x、y是一对相反数,通过计算说明原题中“”是几?参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解析】各项计算得到结果,即可作出判断【详解】解:A、原式=2a,不符合题意;B、原式=a2-2ab+b2,不符合题意;C、原式=a2+ab,不符合题意;D、原式=3
9、b,符合题意;故选D【点睛】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键2、A【解析】分析:根据点A(a2,4)和B(3,2a2)到x轴的距离相等,得到4|2a2|,即可解答详解:点A(a2,4)和B(3,2a2)到x轴的距离相等,4|2a2|,a23,解得:a3,故选A点睛:考查点的坐标的相关知识;用到的知识点为:到x轴和y轴的距离相等的点的横纵坐标相等或互为相反数3、A【解析】根据三角形中位线定理判断即可【详解】AD为ABC的中线,点E为AC边的中点,DC=BC,DE=AB,BC不一定等于AB,DC不一定等于DE,A不一定成立;AB=2DE,B一定成立;SCDE=SABC,C一
10、定成立;DEAB,D一定成立;故选A【点睛】本题考查的是三角形中位线定理,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键4、B【解析】根据轴对称图形与中心对称图形的概念求解【详解】A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,也是中心对称图形,故此选项正确;C、不是轴对称图形,是中心对称图形,故此选项错误;D、不是轴对称图形,是中心对称图形,故此选项错误故选B【点睛】考查了中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合5、C【解析】由OP平分AOB,AOB=60,
11、CP=2,CPOA,易得OCP是等腰三角形,COP=30,又由含30角的直角三角形的性质,即可求得PE的值,继而求得OP的长,然后由直角三角形斜边上的中线等于斜边的一半,即可求得DM的长【详解】解:OP平分AOB,AOB=60,AOP=COP=30,CPOA,AOP=CPO,COP=CPO,OC=CP=2,PCE=AOB=60,PEOB,CPE=30,CE=CP=1,PE=,OP=2PE=2,PDOA,点M是OP的中点,DM=OP=故选C考点:角平分线的性质;含30度角的直角三角形;直角三角形斜边上的中线;勾股定理6、B【解析】由于EDBC,可证得ABCADE,根据相似三角形所得比例线段,即可
12、求得AE的长【详解】EDBC,ABCADE, =, =,即AE=9;AE=9.故答案选B.【点睛】本题考查的知识点是相似三角形的判定与性质,解题的关键是熟练的掌握相似三角形的判定与性质.7、D【解析】由AB的垂直平分MN交AC于D,根据线段垂直平分线的性质,即可求得AD=BD,又由CDB的周长为:BC+CD+BD=BC+CD+AD=BC+AC,即可求得答案【详解】解:MN是线段AB的垂直平分线,ADBD,ABAC10,BD+CDAD+CDAC10,BCD的周长AC+BC10+616,故选D【点睛】此题考查了线段垂直平分线的性质,比较简单,注意数形结合思想与转化思想的应用8、A【解析】分析:根据
13、从上面看得到的图形是俯视图,可得答案详解:从上面看第一列是两个小正方形,第二列是一个小正方形,第三列是一个小正方形,故选:A点睛:本题考查了简单组合体的三视图,从上面看得到的图形是俯视图9、A【解析】根据题意,将运动过程分成两段分段讨论求出解析式即可【详解】BD=2,B=60,点D到AB距离为, 当0 x2时,y=; 当2x4时,y=. 根据函数解析式,A符合条件.故选A【点睛】本题为动点问题的函数图象,解答关键是找到动点到达临界点前后的一般图形,分类讨论,求出函数关系式10、B【解析】试题分析:根据概率的求法,找准两点:全部等可能情况的总数;符合条件的情况数目;二者的比值就是其发生的概率.
14、因此,从0,1,2,1,3中任抽一张,那么抽到负数的概率是.故选B.考点:概率.二、填空题(本大题共6个小题,每小题3分,共18分)11、【解析】根据算术平方根的定义即可求解【详解】解:1,1,1故答案为【点睛】考查了算术平方根,非负数a的算术平方根a有双重非负性:被开方数a是非负数;算术平方根a本身是非负数12、50【解析】【分析】直接利用圆周角定理进行求解即可【详解】弧AB所对的圆心角是100,弧AB所对的圆周角为50,故答案为:50【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半13、2【解析】将数据排序后,位置在最中间的数值。即将
15、数据分成两部分,一部分大于该数值,一部分小于该数值。中位数的位置:当样本数为奇数时,中位数=(N+1)/2 ; 当样本数为偶数时,中位数为N/2与1+N/2的均值;众数是在一组数据中,出现次数最多的数据。根据定义即可算出【详解】2、1、5、1、8中只有1出现两次,其余都是1次,得众数为a=12、1、5、1、8重新排列2、1、1、5、8,中间的数是1,中位数b=1ab=1-1=2故答案为:2【点睛】中位数与众数的定义14、【解析】探究规律后,写出第n个等式即可求解【详解】解:则第n个等式为 故答案为:【点睛】本题主要考查二次根式的应用,找到规律是解题的关键.15、x11,x21【解析】直接观察图
16、象,抛物线与x轴交于1,对称轴是x1,所以根据抛物线的对称性可以求得抛物线与x轴的另一交点坐标,从而求得关于x的一元二次方程x2+bx+c0的解【详解】解:观察图象可知,抛物线yx2+bx+c与x轴的一个交点为(1,0),对称轴为x1,抛物线与x轴的另一交点坐标为(1,0),一元二次方程x2+bx+c0的解为x11,x21故本题答案为:x11,x21【点睛】本题考查了二次函数与一元二次方程的关系一元二次方程-x2+bx+c=0的解实质上是抛物线y=-x2+bx+c与x轴交点的横坐标的值16、1【解析】先利用垂径定理得到ODBC,则BE=CE,再证明OE为ABC的中位线得到,入境计算ODOE即可
17、【详解】解:BDCD,ODBC,BECE,而OAOB,OE为ABC的中位线,DEODOE531故答案为1【点睛】此题考查垂径定理,中位线的性质,解题的关键在于利用中位线的性质求解.三、解答题(共8题,共72分)17、(1)弦AB长度的最大值为4,最小值为2;(2)面积最大值为(2500+2400)平方米,周长最大值为340米.【解析】(1)当AB是过P点的直径时,AB最长;当ABOP时,AB最短,分别求出即可.(2)如图在ABC的一侧以AC为边做等边三角形AEC,再做AEC的外接圆,则满足ADC=60的点D在优弧AEC上(点D不与A、C重合),当D与E重合时,SADC最大值=SAEC,由SAB
18、C为定值,故此时四边形ABCD的面积最大,再根据勾股定理和等边三角形的性质求出此时的面积与周长即可.【详解】(1)(1)当AB是过P点的直径时,AB最长=22=4;当ABOP时,AB最短, AP=AB=2(2)如图,在ABC的一侧以AC为边做等边三角形AEC,再做AEC的外接圆,当D与E重合时,SADC最大故此时四边形ABCD的面积最大,ABC=90,AB=80,BC=60AC=周长为AB+BC+CD+AE=80+60+100+100=340(米)SADC=SABC=四边形ABCD面积最大值为(2500+2400)平方米.【点睛】此题主要考查圆的综合利用,解题的关键是熟知圆的性质定理与垂径定理
19、.18、(1);(2);(3)x=1【解析】(1)用不合格品的数量除以总量即可求得抽到不合格品的概率;(2)利用独立事件同时发生的概率等于两个独立事件单独发生的概率的积即可计算;(3)根据频率估计出概率,利用概率公式列式计算即可求得x的值.【详解】解:(1)4件同型号的产品中,有1件不合格品,P(不合格品)=;(2)共有12种情况,抽到的都是合格品的情况有6种,P(抽到的都是合格品)=;(3)大量重复试验后发现,抽到合格品的频率稳定在0.95,抽到合格品的概率等于0.95, =0.95,解得:x=1【点睛】本题考查利用频率估计概率;概率公式;列表法与树状图法19、(1);(2)x1;(3)P(
20、,0)或(,0)【解析】分析:(1)求得A(1,3),把A(1,3)代入双曲线y=,可得y与x之间的函数关系式;(2)依据A(1,3),可得当x0时,不等式x+b的解集为x1;(3)分两种情况进行讨论,AP把ABC的面积分成1:3两部分,则CP=BC=,或BP=BC=,即可得到OP=3=,或OP=4=,进而得出点P的坐标详解:(1)把A(1,m)代入y1=x+4,可得m=1+4=3,A(1,3),把A(1,3)代入双曲线y=,可得k=13=3,y与x之间的函数关系式为:y=;(2)A(1,3),当x0时,不等式x+b的解集为:x1;(3)y1=x+4,令y=0,则x=4,点B的坐标为(4,0)
21、,把A(1,3)代入y2=x+b,可得3=+b,b=,y2=x+,令y2=0,则x=3,即C(3,0),BC=7,AP把ABC的面积分成1:3两部分,CP=BC=,或BP=BC=OP=3=,或OP=4=,P(,0)或(,0)点睛:本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点20、(1)50;(2)见解析;(3)2400.【解析】(1)用反对的频数除以反对的频率得到调查的总人数;(2)求无所谓的人数和赞成的频率即可把整理的不完整图表补充完整;(3)根据题意列式计算即可【详解】解:(
22、1)观察统计表知道:反对的频数为40,频率为0.8,故调查的人数为:400.850人;故答案为:50;(2)无所谓的频数为:505405人,赞成的频率为:10.10.80.1;看法频数频率赞成50.1无所谓50.1反对400.8统计图为:(3)0.830002400人,答:该校持“反对”态度的学生人数是2400人【点睛】本题考查的是条形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据21、(1)y=2x2+x+3;(2)ACB=45;(3)D点坐标为(1,2)或(4,25)【解析】(1)设交点式y=a(x+1)(x),展开得到a
23、=3,然后求出a即可得到抛物线解析式;(2)作AEBC于E,如图1,先确定C(0,3),再分别计算出AC=,BC=,接着利用面积法计算出AE=,然后根据三角函数的定义求出ACE即可;(3)作BHCD于H,如图2,设H(m,n),证明RtBCHRtACO,利用相似计算出BH=,CH=,再根据两点间的距离公式得到(m)2+n2=()2,m2+(n3)2=()2,接着通过解方程组得到H(,)或(),然后求出直线CD的解析式,与二次函数联立成方程组,解方程组即可【详解】(1)设抛物线解析式为y=a(x+1)(x),即y=ax2axa,a=3,解得:a=2,抛物线解析式为y=2x2+x+3;(2)作AE
24、BC于E,如图1,当x=0时,y=2x2+x+3=3,则C(0,3),而A(1,0),B(,0),AC=,BC=AEBC=OCAB,AE=在RtACE中,sinACE=,ACE=45,即ACB=45;(3)作BHCD于H,如图2,设H(m,n)tanDCB=tanACO,HCB=ACO,RtBCHRtACO,=,即=,BH=,CH=,(m)2+n2=()2=,m2+(n3)2=()2=,得m=2n+,把代入得:(2n+)2+n2=,整理得:80n248n9=0,解得:n1=,n2=当n=时,m=2n+=,此时H(,),易得直线CD的解析式为y=7x+3,解方程组得:或,此时D点坐标为(4,25
25、);当n=时,m=2n+=,此时H(),易得直线CD的解析式为y=x+3,解方程组得:或,此时D点坐标为(1,2)综上所述:D点坐标为(1,2)或(4,25)【点睛】本题是二次函数综合题熟练掌握二次函数图象上点的坐标特征、二次函数的性质和相似三角形的判定的性质;会利用待定系数法求函数解析式,把求两函数交点问题转化为解方程组的问题;理解坐标与图形性质;会运用分类讨论的思想解决数学问题22、(1)画树状图得:则共有9种等可能的结果;(2)两次摸出的球上的数字和为偶数的概率为:【解析】试题分析:(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)由(1)可求得两次摸出的球上的数字和为偶数的有5种情况,再利用概率公式即可求得答案试题解析:(1)画树状图
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 轻松的年会个人主持稿5篇
- 医疗废物无害化处理项目申请报告可行性实施报告
- 电子废弃物处理机械设备制造项目可行性研究报告
- 生物体外诊断试剂技改项目可行性研究报告
- 陕西前期物业服务合同备案规定法条
- 商铺电力安装合同协议书
- 销售部年度工作计划5篇范文
- 知识产权价值评估手册
- 员工宿舍物品存放规则
- 大型输变电站预应力施工合同
- 2024年广东省高职高考语文试卷及答案
- 2024至2030年中国眼部护理行业运营现状与未来需求趋势分析报告
- 圆圈正义读书分享课件
- 四平事业单位笔试真题及答案2024
- 一年级数学上册苏教版《连加、连减》教学设计
- 北师大版数学二年级上册小学数学口算、简算、计算、应用题及能力提升训练检测题(含答案)
- 跨文化商务交际课程教学大纲
- 学前儿童英语教育与活动指导(学前教育专业)全套教学课件
- 化工产品销售管理制度
- 螺旋藻生物学特征课件讲解
- 班主任专业能力大赛情景答辩小学组真题及答案
评论
0/150
提交评论