版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如图,函数y=2x+2的图象分别与x轴,y轴交于A,B两点,点C在第一象限,ACAB,且AC=AB,则点C的坐标为()A(2,1)B(1,2)C(1,3)D(3,1)2某种计算器标价240元,若以8折优惠销售,仍可获利20%,那么这种计算器的进价为()A152元B156元C160元D
2、190元3下列运算正确的是()A =2B4=1C=9D=24在实数3.5、2、0、4中,最小的数是()A3.5B2C0D45若实数 a,b 满足|a|b|,则与实数 a,b 对应的点在数轴上的位置可以是( )ABCD6如图是测量一物体体积的过程:步骤一:将180 mL的水装进一个容量为300 mL的杯子中;步骤二:将三个相同的玻璃球放入水中,结果水没有满;步骤三:再将一个同样的玻璃球放入水中,结果水满溢出.根据以上过程,推测一个玻璃球的体积在下列哪一范围内?(1 mL=1 cm3)().A10 cm3以上,20 cm3以下B20 cm3以上,30 cm3以下C30 cm3以上,40 cm3以下
3、D40 cm3以上,50 cm3以下7如图,函数y1=x3与y2=在同一坐标系中的图象如图所示,则当y1y2时()A1xlB0 x1或x1C1xI且x0D1x0或x18数据3、6、7、1、7、2、9的中位数和众数分别是()A1和7B1和9C6和7D6和99若函数的图象在其象限内y的值随x值的增大而增大,则m的取值范围是()Am2Bm2Cm2Dm210PM2.5是指大气中直径小于或等于2.5m(0.0000025m)的颗粒物,含有大量有毒、有害物质,也称为可入肺颗粒物,将25微米用科学记数法可表示为()米A25107 B2.5106 C0.25105 D2.5105二、填空题(共7小题,每小题3
4、分,满分21分)11如图,利用标杆测量建筑物的高度,已知标杆高1.2,测得,则建筑物的高是_ 12如果关于x的方程x2+kx+34k2-3k+92=0的两个实数根分别为x1,x2,那么x12017x22018的值为_13将函数y=3x+1的图象沿y轴向下平移2个单位长度,所得直线的函数表达式为_14若代数式有意义,则实数x的取值范围是_.15如图,AB为圆O的直径,弦CDAB,垂足为点E,连接OC,若OC5,CD8,则AE_16如图,在RtABC中,ACB90,A30,BC2,点D是边AB上的动点,将ACD沿CD所在的直线折叠至CDA的位置,CA交AB于点E若AED为直角三角形,则AD的长为_
5、17在平面直角坐标系xOy中,将一块含有45角的直角三角板如图放置,直角顶点C的坐标为(1,0),顶点A的坐标(0,2),顶点B恰好落在第一象限的双曲线上,现将直角三角板沿x轴正方向平移,当顶点A恰好落在该双曲线上时停止运动,则此时点C的对应点C的坐标为_三、解答题(共7小题,满分69分)18(10分)某保健品厂每天生产A,B两种品牌的保健品共600瓶,A,B两种产品每瓶的成本和利润如表,设每天生产A产品x瓶,生产这两种产品每天共获利y元(1)请求出y关于x的函数关系式;(2)如果该厂每天至少投入成本26 400元,那么每天至少获利多少元?(3)该厂每天生产的A,B两种产品被某经销商全部订购,
6、厂家对A产品进行让利,每瓶利润降低元,厂家如何生产可使每天获利最大?最大利润是多少?AB成本(元/瓶)5035利润(元/瓶)201519(5分)在正方形网格中,每个小正方形的边长均为1个单位长度,ABC的三个顶点的位置如图所示现将ABC平移,使点A变换为点D,点E、F分别是B、C的对应点请画出平移后的DEF连接AD、CF,则这两条线段之间的关系是_20(8分)已知抛物线的开口向上顶点为P(1)若P点坐标为(4,一1),求抛物线的解析式;(2)若此抛物线经过(4,一1),当1x2时,求y的取值范围(用含a的代数式表示)(3)若a1,且当0 x1时,抛物线上的点到x轴距离的最大值为6,求b的值21
7、(10分)如图,分别延长ABCD的边到,使,连接EF,分别交于,连结求证:22(10分)某中学为了提高学生的消防意识,举行了消防知识竞赛,所有参赛学生分别设有一、二、三等奖和纪念奖,获奖情况已绘制成如图所示的两幅不完整的统计图,根据图中所经信息解答下列问题:(1)这次知识竞赛共有多少名学生?(2)“二等奖”对应的扇形圆心角度数,并将条形统计图补充完整;(3)小华参加了此次的知识竞赛,请你帮他求出获得“一等奖或二等奖”的概率23(12分)如图,在RtABC中,CDAB于点D,BEAB于点B,BE=CD,连接CE,DE(1)求证:四边形CDBE为矩形;(2)若AC=2,求DE的长24(14分)如图
8、,已知抛物线经过原点o和x轴上一点A(4,0),抛物线顶点为E,它的对称轴与x轴交于点D直线y=2x1经过抛物线上一点B(2,m)且与y轴交于点C,与抛物线的对称轴交于点F(1)求m的值及该抛物线对应的解析式;(2)P(x,y)是抛物线上的一点,若SADP=SADC,求出所有符合条件的点P的坐标;(3)点Q是平面内任意一点,点M从点F出发,沿对称轴向上以每秒1个单位长度的速度匀速运动,设点M的运动时间为t秒,是否能使以Q、A、E、M四点为顶点的四边形是菱形若能,请直接写出点M的运动时间t的值;若不能,请说明理由参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解析】过
9、点C作CDx轴与D,如图,先利用一次函数图像上点的坐标特征确定B(0,2),A(1,0),再证明ABOCAD,得到ADOB2,CDAO1,则C点坐标可求.【详解】如图,过点C作CDx轴与D.函数y=2x+2的图象分别与x轴,y轴交于A,B两点,当x0时,y2,则B(0,2);当y0时,x1,则A(1,0).ACAB,ACAB,BAOCAD90,ABOCAD.在ABO和CAD中,AOBCDAABOCADABCA,ABOCAD,ADOB2,CDOA1,ODOAAD123,C点坐标为(3,1).故选D.【点睛】本题主要考查一次函数的基本概念。角角边定理、全等三角形的性质以及一次函数的应用,熟练掌握相
10、关知识点是解答的关键.2、C【解析】【分析】设进价为x元,依题意得2400.8-x=20 x,解方程可得.【详解】设进价为x元,依题意得2400.8-x=20 x解得x=160所以,进价为160元.故选C【点睛】本题考核知识点:列方程解应用题. 解题关键点:找出相等关系.3、A【解析】根据二次根式的性质对A进行判断;根据二次根式的加减法对B进行判断;根据二次根式的除法法则对C进行判断;根据二次根式的乘法法则对D进行判断【详解】A、原式=2,所以A选项正确;B、原式=4-3=,所以B选项错误;C、原式=3,所以C选项错误;D、原式=,所以D选项错误故选A【点睛】本题考查了二次根式的混合运算:先把
11、二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍4、D【解析】根据任意两个实数都可以比较大小正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小进行比较即可【详解】在实数3.5、2、0、4中,最小的数是4,故选D【点睛】掌握实数比较大小的法则5、D【解析】根据绝对值的意义即可解答【详解】由|a|b|,得a与原点的距离比b与原点的距离远, 只有选项D符合,故选D【点睛】本题考查了实数与数轴,熟练运用绝对值的意义是解题关键6、C【解析】分析:本题可设玻璃球
12、的体积为x,再根据题意列出不等式组求得解集得出答案即可详解:设玻璃球的体积为x,则有解得30 x1故一颗玻璃球的体积在30cm3以上,1cm3以下故选C点睛:此题考查一元一次不等式组的运用,解此类题目常常要根据题意列出不等式组,再化简计算得出x的取值范围7、B【解析】根据图象知,两个函数的图象的交点是(1,1),(-1,-1)由图象可以直接写出当y1y2时所对应的x的取值范围【详解】根据图象知,一次函数y1=x3与反比例函数y2=的交点是(1,1),(-1,1),当y1y2时,, 0 x1或x-1;故答案选:B.【点睛】本题考查了反比例函数与幂函数,解题的关键是熟练的掌握反比例函数与幂函数的图
13、象根据图象找出答案.8、C【解析】如果一组数据有奇数个,那么把这组数据从小到大排列后,排在中间位置的数是这组数据的中位数;如果一组数据有偶数个,那么把这组数据从小到大排列后,排在中间位置的两个数的平均数是这组数据的中位数. 一组数据中出现次数最多的数据叫做众数【详解】解:7出现了2次,出现的次数最多,众数是7;从小到大排列后是:1,2,3,6,7,7,9,排在中间的数是6,中位数是6故选C【点睛】本题考查了中位数和众数的求法,解答本题的关键是熟练掌握中位数和众数的定义9、B【解析】根据反比例函数的性质,可得m+10,从而得出m的取值范围【详解】函数的图象在其象限内y的值随x值的增大而增大,m+
14、10,解得m-1故选B10、B【解析】由科学计数法的概念表示出0.0000025即可.【详解】0.0000025=2.5106.故选B.【点睛】本题主要考查科学计数法,熟记相关概念是解题关键.二、填空题(共7小题,每小题3分,满分21分)11、10.5【解析】先证AEBABC,再利用相似的性质即可求出答案.【详解】解:由题可知,BEAC,DCACBE/DC,AEBADC,即:,CD10.5(m).故答案为10.5.【点睛】本题考查了相似的判定和性质.利用相似的性质列出含所求边的比例式是解题的关键.12、-23【解析】由方程有两个实数根,得到根的判别式的值大于等于0,列出关于k的不等式,利用非负
15、数的性质得到k的值,确定出方程,求出方程的解,代入所求式子中计算即可求出值【详解】方程x2+kx+34k2-3k+920有两个实数根,b2-4ac=k2-4(34k2-3k+92)=-2k2+12k-18=-2(k-3)20,k=3,代入方程得:x2+3x+94=(x+32)2=0,解得:x1=x2=-32,则x12017x22018=-23故答案为-23【点睛】此题考查了根的判别式,非负数的性质,以及配方法的应用,求出k的值是本题的突破点13、y=3x-1【解析】y=3x+1的图象沿y轴向下平移2个单位长度,平移后所得图象对应的函数关系式为:y=3x+12,即y=3x1故答案为y=3x114
16、、x5.【解析】根据分母不为零分式有意义,可得答案.【详解】由题意,得x+50,解得x5,故答案是:x5.【点睛】本题考查了分式有意义的条件,利用分母不为零分式有意义得出不等式是解题关键.15、2【解析】试题解析:AB为圆O的直径,弦CDAB,垂足为点E.在直角OCE中, 则AE=OAOE=53=2.故答案为2.16、3或1【解析】分两种情况:情况一:如图一所示,当ADE=90时;情况二:如图二所示,当AED=90时.【详解】解:如图,当ADE=90时,AED为直角三角形,A=A=30,AED=60=BEC=B,BEC是等边三角形,BE=BC=1,又RtABC中,AB=1BC=4,AE=1,设
17、AD=AD=x,则DE=1x,RtADE中,AD=DE,x=(1x),解得x=3,即AD的长为3;如图,当AED=90时,AED为直角三角形,此时BEC=90,B=60,BCE=30,BE=BC=1,又RtABC中,AB=1BC=4,AE=41=3,DE=3x,设AD=AD=x,则RtADE中,AD=1DE,即x=1(3x),解得x=1,即AD的长为1;综上所述,即AD的长为3或1故答案为3或1【点睛】本题考查了翻折变换,勾股定理,等腰直角三角形的判定和性质等知识,添加辅助线,构造直角三角形,学会运用分类讨论是解题的关键.17、(,0)【解析】试题解析:过点B作BDx轴于点D,ACO+BCD=
18、90, OAC+ACO=90,OAC=BCD,在ACO与BCD中, ,ACOBCD(AAS)OC=BD,OA=CD,A(0,2),C(1,0)OD=3,BD=1,B(3,1),设反比例函数的解析式为y=,将B(3,1)代入y=,k=3,y=,把y=2代入y=,x=,当顶点A恰好落在该双曲线上时,此时点A移动了个单位长度,C也移动了个单位长度,此时点C的对应点C的坐标为(,0)故答案为(,0).三、解答题(共7小题,满分69分)18、(1)y=5x+9000;(2)每天至少获利10800元;(3)每天生产A产品250件,B产品350件获利最大,最大利润为9625元 【解析】试题分析:(1)A种品
19、牌白酒x瓶,则B种品牌白酒(600-x)瓶;利润=A种品牌白酒瓶数A种品牌白酒一瓶的利润+B种品牌白酒瓶数B种品牌白酒一瓶的利润,列出函数关系式;(2)A种品牌白酒x瓶,则B种品牌白酒(600-x)瓶;成本=A种品牌白酒瓶数A种品牌白酒一瓶的成本+B种品牌白酒瓶数B种品牌白酒一瓶的成本,列出不等式,求x的值,再代入(1)求利润(3)列出y与x的关系式,求y的最大值时,x的值.试题解析:(1)y=20 x+15(600-x) =5x+9000,y关于x的函数关系式为y=5x+9000;(2)根据题意,得50 x+35(600-x)26400, 解得x360, y=5x+9000,50,y随x的增
20、大而增大,当x=360时,y有最小值为10800,每天至少获利10800元;(3) ,当x=250时,y有最大值9625,每天生产A产品250件,B产品350件获利最大,最大利润为9625元 19、见解析【解析】(1)如图:(2)连接AD、CF,则这两条线段之间的关系是ADCF,且ADCF20、(1);(2)14ay45a;(3)b2或10.【解析】(1)将P(4,-1)代入,可求出解析式(2)将(4,-1)代入求得:b=-4a-1,再代入对称轴直线 中,可判断,且开口向上,所以y随x的增大而减小,再把x=-1,x=2代入即可求得(3)观察图象可得,当0 x1时,抛物线上的点到x轴距离的最大值
21、为6,这些点可能为x=0,x=1,三种情况,再根据对称轴在不同位置进行讨论即可【详解】解:(1)由此抛物线顶点为P(4,-1),所以ya(x-4)2-1ax28ax16a1,即16a13,解得a=, b=-8a=-2所以抛物线解析式为:;(2)由此抛物线经过点C(4,1),所以 一116a4b3,即b4a1因为抛物线的开口向上,则有 其对称轴为直线,而 所以当1x2时,y随着x的增大而减小当x1时,y=a+(4a+1)+3=4+5a当x2时,y=4a-2(4a+1)+3=1-4a所以当1x2时,14ay45a;(3)当a1时,抛物线的解析式为yx2bx3抛物线的对称轴为直线由抛物线图象可知,仅
22、当x0,x1或x时,抛物线上的点可能离x轴最远分别代入可得,当x0时,y=3当x=1时,yb4当x=-时,y=-+3当一0,即b0时,3yb+4,由b46解得b2当0-1时,即一2b0时,b2120,抛物线与x轴无公共点由b46解得b2(舍去);当 ,即b2时,b4y3,由b46解得b10综上,b2或10【点睛】本题考查了二次函数的性质,待定系数法求函数解析式,以及最值问题,关键是对称轴在不同的范围内,抛物线上的点到x轴距离的最大值的点不同21、证明见解析【解析】分析:根据平行四边形的性质以及已知的条件得出EGD和FHB全等,从而得出DG=BH,从而说明AG和CH平行且相等,得出四边形AHCG
23、为平行四边形,从而得出答案详解:证明:在ABCD中,又,又,四边形AGCH为平行四边形, 点睛:本题主要考查的是平行四边形的性质以及判定定理,属于基础题型解决这个问题的关键就是根据平行四边形的性质得出四边形AHCG为平行四边形22、 (1)200;(2)72,作图见解析;(3).【解析】(1)用一等奖的人数除以所占的百分比求出总人数; (2)用总人数乘以二等奖的人数所占的百分比求出二等奖的人数,补全统计图,再用360乘以二等奖的人数所占的百分比即可求出“二等奖”对应的扇形圆心角度数;(3)用获得一等奖和二等奖的人数除以总人数即可得出答案.【详解】解:(1)这次知识竞赛共有学生=200(名);(2)二等奖的人数是:200(110%24%46
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《世界著名车商》课件
- 物流专业的职业规划书
- 露营美术课件制作
- 主要利益相关群体项目参与形式活动内容表
- 医疗设备智能监测技术研究
- 国家开放大学《公文写作》专题练习1-13参考答案
- 画角的公开课
- 人工智能训练师(初级-五级)职业技能鉴定理论考试题库-上(单选题)
- 2024-2025学年高一【数学(人教A版)】根式与分数指数幂-教学设计
- 行政机关强制拆除“违法建筑”具体流程及合法性审查
- 光伏产品全球经销商
- 国际快递常用形式发票(DHL UPS FedEx)
- 小学生课堂常规要求推荐(课堂PPT)
- 客户资产移交明细表
- setupFactory基础_进阶
- 小学三年级上册音乐-第五单元《读唐诗》--苏少版(14张)ppt课件
- 第六章方差分析(3)
- 关于英语广场美文阅读
- 学校(纸盘画)社团活动课程简案
- 2019年山东职业院校技能大赛高职组HTML5交互融媒体内容设计与制作赛项任务书真题试题
- 澳大利亚公司法31-80
评论
0/150
提交评论