一元一次不等式概念24_第1页
一元一次不等式概念24_第2页
一元一次不等式概念24_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、PAGE - 5 -PAGE - 3 -92一元一次不等式第1课时一元一次不等式的解法王维青教学目标:1理解一元一次不等式的概念;(重点)2掌握一元一次不等式的解法(重点、难点) 教学过程:一、情境导入1什么叫一元一次方程?2解一元一次方程的一般步骤是什么?要注意什么?3如果把一元一次方程中的等号改为不等号,怎样求解?二、合作探究探究点一:一元一次不等式的概念【类型一】 一元一次不等式的识别 下列不等式中,是一元一次不等式的是()A5x20 B32eq f(1,x)C6x3y2 Dy212【类型二】 根据一元一次不等式的概念确定字母的取值范围 已知eq f(1,3)x2a150是关于x的一元一

2、次不等式,则a的值是_【类型一】 解一元一次不等式及在数轴上表示不等式的解集 解下列不等式,并把解集在数轴上表示出来:(1)2x3eq f(x1,3); (2)eq f(2x1,3)eq f(9x2,6)1.解析:先去分母,再去括号、移项、合并同类项,系数化为1,求出不等式的解集,然后在数轴上表示出来即可解:(1)去分母,得3(2x3)x1,去括号,得6x9x1,移项,合并同类项,得5x10,系数化为1,得x2.不等式的解集在数轴上表示如下:(2)去分母,得2(2x1)(9x2)6,去括号,得4x29x26,移项,得4x9x622,合并同类项,得5x10,系数化为1,得x2.不等式的解集在数轴上表示如下:【类型二】 根据不等式的解集求待定系数 已知不等式x84xm(m是常数)的解集是x3,求m的值解析:先解不等式x84xm,再列方程求解解:因为x84xm,所以x4xm8,所以3xm8,所以xeq f(1,3)(m8)因为其解集为x3,所以eq f(1,3)(m8)3,解得m1. 三、小结1一元一次不等式的概念2解

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论