第27章相似三角形复习课件_第1页
第27章相似三角形复习课件_第2页
第27章相似三角形复习课件_第3页
第27章相似三角形复习课件_第4页
第27章相似三角形复习课件_第5页
已阅读5页,还剩24页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、27.2相似三角形复习课一、复习:1、相似三角形的定义是什么?答:对应角相等,对应边成比例的两个三角形叫做相似三角形.2、判定两个三角形相似有哪些方法?答:A、用定义;B、用预备定理;C、用判定定理1、2、3.D、直角三角形相似的判定定理3、相似三角形有哪些性质1、对应角相等,对应边成比例2、对应角平分线、对应中线、对应高线、对应周长的比都等于相似比。3、相似三角形面积的比等于相似比的平方。一.填空选择题:1.(1) ABC中,D、E分别是AB、AC上的点,且AED= B,那么 AED ABC,从而 (2) ABC中,AB的中点为E,AC的中点为D,连结ED, 则 AED与 ABC的相似比为_

2、.2.如图,DEBC, AD:DB=2:3, 则 AED和 ABC 的相似比为.3. 已知三角形甲各边的比为3:4:6, 和它相似的三角形乙 的最大边为10cm, 则三角形乙的最短边为_cm.4.等腰三角形ABC的腰长为18cm,底边长为6cm,在腰AC上取点D, 使ABC BDC, 则DC=_.AC2:552cm1:25. 如图,ADE ACB, 则DE:BC=_ 。6. 如图,D是ABC一边BC 上一点,连接AD,使 ABC DBA的条件是( ). A. AC:BC=AD:BD B. AC:BC=AB:AD C. AB2=CDBC D. AB2=BDBC7. D、E分别为ABC 的AB、A

3、C上的点,且DEBC,DCB= A,把每两个相似的三角形称为一组,那么图中共有相似三角形_组。1:3D4二、证明题:1. D为ABC中AB边上一点, ACD= ABC. 求证:AC2=ADAB.2. ABC中, BAC是直角,过斜 边中点M而垂直于斜边BC的直线 交CA的延长线于E,交AB于D, 连AM. 求证: MAD MEA AM2=MD ME3. 如图,ABCD,AO=OB, DF=FB,DF交AC于E, 求证:ED2=EO EC.4. 过ABCD的一个顶点A作一直 线分别交对角线BD、边BC、边 DC的延长线于E、F、G . 求证:EA2 = EF EG .5. ABC为锐角三角形,B

4、D、CE 为高 . 求证: ADE ABC (用两种方法证明).6. 已知在ABC中,BAC=90, ADBC,E是AC的中点,ED交 AB的延长线于F. 求证: AB:AC=DF:AF.4. 过ABCD的一个顶点A作一直线分别交对角线BD、边BC、边DC的延长线于E、F、G . 求证:EA2 = EF EG . 分析:要证明 EA2 = EF EG ,即 证明 成立,而EA、EG、EF三条线段在同一直线上,无法构成两个三角形,此时应采用换线段、换比例的方法。可证明:AEDFEB, AEB GED.证明: ADBF , ABBC AED FEB AEB GED5. ABC为锐角三角形,BD、C

5、E为高 . 求证: ADE ABC(用两种方法证明).证明一: BDAC,CEAB ABD+A=90, ACE+A= 90 ABD= ACE 又 A= A ABD ACE A= A ADE ABC 证明二: BEO= CDO BOE=COD BOE COD 即 又 BOC= EOD BOC EOD 1= 2 1+ BCD=90, 2+ 3= 90 BCD= 3 又 A= A ADE ABC6. 已知在ABC中,BAC=90,ADBC,E是AC的中点,ED交AB的延长线于F. 求证: AB:AC=DF:AF.分析:因ABCABD,所以 , 要证 即证 , 需证BDFDAF.证明: BAC=90

6、ADBC ABC+C= 90 ABC+BAD= 90 BAD= C ADC= 90 E是AC的中点,ED=EC EDC= C EDC = BDF BDF= C= BAD又 F =F BDFDAF. BAC=90, ADBC ABCABD 解:AED=B, A=A AED ABC(两角对 应相等,两三角形相似) 1.(1) ABC中,D、E分别是AB、AC上的点, 且AED= B,那么 AED ABC, 从而 AC 解 :D、E分别为AB、AC的中点 DEBC,且 ADEABC 即ADE与ABC的相似比为1:2 (2) ABC中,AB的中点为D,AC的中点为E,连结DE, 则 ADE与 ABC的

7、相似比为_1:22. 解: DEBC ADEABC AD:DB=2:3 DB:AD=3:2 (DB+AD):AD=(2+3):3 即 AB:AD=5:2 AD:AB=2:5 即ADE与ABC的相似比为2:5 如图,DEBC, AD:DB=2:3, 则 AED和 ABC 的相似比为.2:53.已知三角形甲各边的比为3:4:6, 和它相似的三角形乙的最大边为10cm, 则三角形乙的最短边为_cm.解: 设三角形甲为ABC ,三角形乙为 DEF,且DEF的最大边为DE,最短边为EF DEFABC DE:EF=6:3即 10:EF=6:3 EF=5cm5cm4.等腰三角形ABC的腰长为18cm,底边长

8、为6cm,在 腰AC上取点D, 使ABC BDC, 则DC=_.解: ABC BDC 即 DC=2cm2cm5.解: ADEACB 且 如图,ADE ACB, 则DE:BC=_ 。1:37. D、E分别为ABC 的AB、AC上的点,DEBC, DCB= A,把每两个相似的三角形称为一组, 那么图中共有相似三角形_组。解: DEBC ADE= B, EDC=DCB=A DEBC ADE ABC A= DCB, ADE= B ADE CBD ADE ABC ADE CBD ABC CBD DCA= DCE, A= EDC ADC DEC41. D为ABC中AB边上一点,ACD= ABC. 求证:A

9、C2=ADAB分析:要证明AC2=ADAB,需要先将乘积式改写为比例式 ,再证明AC、AD、AB所在的两个三角形相似。由已知两个三角形有二个角对应相等,所以两三角形相似,本题可证。证明: ACD= ABC A = A ABC ACD AC2=ADAB2. ABC中, BAC是直角,过斜边中点M而垂直于 斜边BC的直线交CA的延长线于E, 交AB于D,连AM. 求证: MAD MEA AM2=MD ME分析:已知中与线段有关的条件仅有AM=BC/2=BM=MC,所以首先考虑用两个角对应相等去判定两个三角形相似。AM是 MAD 与 MEA 的公共边,故是对应边MD、ME的比例中项。证明:BAC=9

10、0 M为斜边BC中点 AM=BM=BC/2 B= MAD又 B+ BDM=90 E+ ADE= 90 BDM= ADEB=EMAD= E又 DMA=AMEMAD MEA MAD MEA 即AM2=MDME3. 如图,ABCD,AO=OB,DF=FB,DF交AC于E, 求证:ED2=EO EC.分析:欲证 ED2=EOEC,即证: ,只需证DE、EO、EC所在的三角形相似。证明: ABCD C=A AO=OB,DF=FB A= B, B= FDB C= FDB 又 DEO= DEC EDCEOD ,即 ED2=EO EC1.已知:如图,ABC中,P是AB边上的一点,连结CP满足什么条件时 ACP

11、ABC 解:A= A,当1= ACB (或2= B)时, ACPABC A= A,当AC:APAB:AC时, ACPABC A= A,当4ACB180时, ACPABC答:当1= ACB 或2= B 或AC:APAB:AC或4ACB180时, ACPABC.APBC1241、条件探索型三、探索题2.如图:已知ABCCDB90,ACa,BC=b,当BD与a、b之间满足怎样的关系式时,两三角形相似DABCab解: 1D90当 时,即当 时,ABC CDB, 1D90当 时,即当 时,ABC BDC, 答:略. 这类题型结论是明确的,而需要完备使结论成立的条件解题思路是:从给定结论出发,通过逆向思考

12、寻求使结论成立的条件 1.将两块完全相同的等腰直角三角板摆成如图的样子,假设图形中的所有点、线都在同一平面内,则图中有相似(不包括全等)三角形吗?如有,把它们一 一写出来.C解:有相似三角形,它们是:ADE BAE, BAE CDA ,ADE CDA( ADE BAE CDA)2、结论探索型ABDEGF22.在ABC中,ABAC,过AB上一点D作直线DE交另一边于E,使所得三角形与原三角形相似,画出满足条件的图形.EDABCDABCDABCDABCEEE这类题型的特征是有条件而无结论,要确定这些条件下可能出现的结论解题思路是:从所给条件出发,通过分析、比较、猜想、寻求多种解法和结论,再进行证明. 3、存在探索型 如图, DE是ABC的中位线,在射线AF上是否存在点M,使MEC与ADE相似,若存在,请先确定点 M,再证明这两个三角形相似,若不存在,请说明理由.ADBCEF证明:连结MC,DE是ABC的中位线,DEBC,AEEC,又MEAC, AMCM, 1= 2 ,B=90, 4 B= 90, AF BC,AM DE, 1= 2 , 3= 2 , ADE MEC=90 , ADE MECADBCEF123M解:存在.过点E作AC的垂线,与AF交于一点,即M点(或作MCA= AED).4所谓存在性问题,一般是要求确定满足某些特定要求的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论