




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1设为虚数单位,为复数,若为实数,则( )ABCD2已知圆与抛物线的准线相切,则的值为()A1B2CD43正三棱锥底
2、面边长为3,侧棱与底面成角,则正三棱锥的外接球的体积为( )ABCD4已知双曲线的左、右焦点分别为,圆与双曲线在第一象限内的交点为M,若则该双曲线的离心率为A2B3CD5已知函数,若所有点,所构成的平面区域面积为,则( )ABC1D6已知集合,则()ABCD7正项等比数列中,且与的等差中项为4,则的公比是 ( )A1B2CD8中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是ABCD9一个陶瓷圆盘的半径为,中间有一个边长为的正方形花纹,向盘中投入1000
3、粒米后,发现落在正方形花纹上的米共有51粒,据此估计圆周率的值为(精确到0.001)( )A3.132B3.137C3.142D3.14710设等差数列的前项和为,若,则( )A21B22C11D1211在正方体中,分别为,的中点,则异面直线,所成角的余弦值为( )ABCD12已知点是抛物线的对称轴与准线的交点,点为抛物线的焦点,点在抛物线上且满足,若取得最大值时,点恰好在以为焦点的椭圆上,则椭圆的离心率为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13在中,内角的对边长分别为,已知,且,则_14若直线与直线交于点,则长度的最大值为_15若函数在区间上有且仅有一个零点,则实数
4、的取值范围有_.16 “直线l1:与直线l2:平行”是“a2”的_条件(填“充分不必要”、“必要不充分”、“充分必要”或“既不充分又不必要”)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)设函数,其中,为正实数.(1)若的图象总在函数的图象的下方,求实数的取值范围;(2)设,证明:对任意,都有.18(12分)如图,直角三角形所在的平面与半圆弧所在平面相交于,,,分别为,的中点, 是上异于,的点, .(1)证明:平面平面;(2)若点为半圆弧上的一个三等分点(靠近点)求二面角的余弦值.19(12分)如图,在四边形ABCD中,AB/CD,ABD=30,AB2CD2AD2
5、,DE平面ABCD,EF/BD,且BD2EF()求证:平面ADE平面BDEF;()若二面角CBFD的大小为60,求CF与平面ABCD所成角的正弦值20(12分)已知函数,为的导数,函数在处取得最小值(1)求证:;(2)若时,恒成立,求的取值范围21(12分)已知(1)若的解集为,求的值;(2)若对任意,不等式恒成立,求实数的取值范围22(10分)随着电子阅读的普及,传统纸质媒体遭受到了强烈的冲击某杂志社近9年来的纸质广告收入如下表所示: 根据这9年的数据,对和作线性相关性检验,求得样本相关系数的绝对值为0.243;根据后5年的数据,对和作线性相关性检验,求得样本相关系数的绝对值为0.984.(
6、1)如果要用线性回归方程预测该杂志社2019年的纸质广告收入,现在有两个方案,方案一:选取这9年数据进行预测,方案二:选取后5年数据进行预测从实际生活背景以及线性相关性检验的角度分析,你觉得哪个方案更合适?附:相关性检验的临界值表:(2)某购物网站同时销售某本畅销书籍的纸质版本和电子书,据统计,在该网站购买该书籍的大量读者中,只购买电子书的读者比例为,纸质版本和电子书同时购买的读者比例为,现用此统计结果作为概率,若从上述读者中随机调查了3位,求购买电子书人数多于只购买纸质版本人数的概率参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
7、1B【解析】可设,将化简,得到,由复数为实数,可得,解方程即可求解【详解】设,则.由题意有,所以.故选:B【点睛】本题考查复数的模长、除法运算,由复数的类型求解对应参数,属于基础题2B【解析】因为圆与抛物线的准线相切,则圆心为(3,0),半径为4,根据相切可知,圆心到直线的距离等于 半径,可知的值为2,选B.【详解】请在此输入详解!3D【解析】由侧棱与底面所成角及底面边长求得正棱锥的高,再利用勾股定理求得球半径后可得球体积【详解】如图,正三棱锥中,是底面的中心,则是正棱锥的高,是侧棱与底面所成的角,即60,由底面边长为3得,正三棱锥外接球球心必在上,设球半径为,则由得,解得,故选:D【点睛】本
8、题考查球体积,考查正三棱锥与外接球的关系掌握正棱锥性质是解题关键4D【解析】本题首先可以通过题意画出图像并过点作垂线交于点,然后通过圆与双曲线的相关性质判断出三角形的形状并求出高的长度,的长度即点纵坐标,然后将点纵坐标带入圆的方程即可得出点坐标,最后将点坐标带入双曲线方程即可得出结果。【详解】根据题意可画出以上图像,过点作垂线并交于点,因为,在双曲线上,所以根据双曲线性质可知,即,因为圆的半径为,是圆的半径,所以,因为,所以,三角形是直角三角形,因为,所以,即点纵坐标为,将点纵坐标带入圆的方程中可得,解得,将点坐标带入双曲线中可得,化简得,故选D。【点睛】本题考查了圆锥曲线的相关性质,主要考察
9、了圆与双曲线的相关性质,考查了圆与双曲线的综合应用,考查了数形结合思想,体现了综合性,提高了学生的逻辑思维能力,是难题。5D【解析】依题意,可得,在上单调递增,于是可得在上的值域为,继而可得,解之即可.【详解】解:,因为,所以,在上单调递增,则在上的值域为,因为所有点所构成的平面区域面积为,所以,解得,故选:D.【点睛】本题考查利用导数研究函数的单调性,理解题意,得到是关键,考查运算能力,属于中档题6A【解析】根据对数性质可知,再根据集合的交集运算即可求解.【详解】,集合,由交集运算可得.故选:A.【点睛】本题考查由对数的性质比较大小,集合交集的简单运算,属于基础题.7D【解析】设等比数列的公
10、比为q,运用等比数列的性质和通项公式,以及等差数列的中项性质,解方程可得公比q【详解】由题意,正项等比数列中,可得,即,与的等差中项为4,即,设公比为q,则,则负的舍去,故选D【点睛】本题主要考查了等差数列的中项性质和等比数列的通项公式的应用,其中解答中熟记等比数列通项公式,合理利用等比数列的性质是解答的关键,着重考查了方程思想和运算能力,属于基础题8A【解析】详解:由题意知,题干中所给的是榫头,是凸出的几何体,求得是卯眼的俯视图,卯眼是凹进去的,即俯视图中应有一不可见的长方形,且俯视图应为对称图形故俯视图为故选A.点睛:本题主要考查空间几何体的三视图,考查学生的空间想象能力,属于基础题。9B
11、【解析】结合随机模拟概念和几何概型公式计算即可【详解】如图,由几何概型公式可知:.故选:B【点睛】本题考查随机模拟的概念和几何概型,属于基础题10A【解析】由题意知成等差数列,结合等差中项,列出方程,即可求出的值.【详解】解:由为等差数列,可知也成等差数列,所以 ,即,解得.故选:A.【点睛】本题考查了等差数列的性质,考查了等差中项.对于等差数列,一般用首项和公差将已知量表示出来,继而求出首项和公差.但是这种基本量法计算量相对比较大,如果能结合等差数列性质,可使得计算量大大减少.11D【解析】连接,因为,所以为异面直线与所成的角(或补角),不妨设正方体的棱长为2,取的中点为,连接,在等腰中,求
12、出,在利用二倍角公式,求出,即可得出答案.【详解】连接,因为,所以为异面直线与所成的角(或补角),不妨设正方体的棱长为2,则,在等腰中,取的中点为,连接,则,所以,即:,所以异面直线,所成角的余弦值为.故选:D.【点睛】本题考查空间异面直线的夹角余弦值,利用了正方体的性质和二倍角公式,还考查空间思维和计算能力.12B【解析】设,利用两点间的距离公式求出的表达式,结合基本不等式的性质求出的最大值时的点坐标,结合椭圆的定义以及椭圆的离心率公式求解即可.【详解】设,因为是抛物线的对称轴与准线的交点,点为抛物线的焦点,所以,则,当时,当时,当且仅当时取等号,此时,点在以为焦点的椭圆上,由椭圆的定义得,
13、所以椭圆的离心率,故选B.【点睛】本题主要考查椭圆的定义及离心率,属于难题.离心率的求解在圆锥曲线的考查中是一个重点也是难点,一般求离心率有以下几种情况:直接求出,从而求出;构造的齐次式,求出;采用离心率的定义以及圆锥曲线的定义来求解二、填空题:本题共4小题,每小题5分,共20分。134【解析】根据正弦定理与余弦定理可得:,即故答案为414【解析】根据题意可知,直线与直线分别过定点,且这两条直线互相垂直,由此可知,其交点在以为直径的圆上,结合图形求出线段的最大值即可.【详解】由题可知,直线可化为,所以其过定点,直线可化为,所以其过定点,且满足,所以直线与直线互相垂直,其交点在以为直径的圆上,作
14、图如下:结合图形可知,线段的最大值为,因为为线段的中点,所以由中点坐标公式可得,所以线段的最大值为.故答案为:【点睛】本题考查过交点的直线系方程、动点的轨迹问题及点与圆的位置关系;考查数形结合思想和运算求解能力;根据圆的定义得到交点在以为直径的圆上是求解本题的关键;属于中档题.15或【解析】函数的零点方程的根,求出方程的两根为,从而可得或,即或.【详解】函数在区间的零点方程在区间的根,所以,解得:,因为函数在区间上有且仅有一个零点,所以或,即或.【点睛】本题考查函数的零点与方程根的关系,在求含绝对值方程时,要注意对绝对值内数的正负进行讨论.16必要不充分【解析】先求解直线l1与直线l2平行的等
15、价条件,然后进行判断.【详解】“直线l1:与直线l2:平行”等价于a2,故“直线l1:与直线l2:平行”是“a2”的必要不充分条件故答案为:必要不充分.【点睛】本题主要考查充分必要条件的判定,把已知条件进行等价转化是求解这类问题的关键,侧重考查逻辑推理的核心素养.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1) (2)证明见解析【解析】(1)据题意可得在区间上恒成立,利用导数讨论函数的单调性,从而求出满足不等式的的取值范围;(2)不等式整理为,由(1)可知当时,利用导数判断函数的单调性从而证明在区间上成立,从而证明对任意,都有.【详解】(1)解:因为函数的图象恒在的图象
16、的下方,所以在区间上恒成立.设,其中,所以,其中,.当,即时,所以函数在上单调递增,故成立,满足题意.当,即时,设,则图象的对称轴,所以在上存在唯一实根,设为,则,所以在上单调递减,此时,不合题意.综上可得,实数的取值范围是.(2)证明:由题意得,因为当时,所以.令,则,所以在上单调递增,即,所以,从而.由(1)知当时,在上恒成立,整理得.令,则要证,只需证.因为,所以在上单调递增,所以,即在上恒成立.综上可得,对任意,都有成立.【点睛】本题考查导数在研究函数中的作用,利用导数判断函数单调性与求函数最值,利用导数证明不等式,属于难题.18(1)详见解析;(2).【解析】(1)由直径所对的圆周角
17、为,可知,通过计算,利用勾股定理的逆定理可以判断出为直角三角形,所以有.由已知可以证明出,这样利用线面垂直的判定定理可以证明平面,利用面面垂直的判定定理可以证明出平面平面;(2)以为坐标原点,分别以垂直于平面向上的方向、向量所在方向作为轴、轴、轴的正方向,建立如图所示的空间直角坐标系,求出相应点的坐标,求出平面的一个法向量和平面的法向量,利用空间向量数量积运算公式,可以求出二面角的余弦值.【详解】解:(1)证明:因为半圆弧上的一点,所以.在中,分别为的中点,所以,且.于是在中, ,所以为直角三角形,且. 因为,,所以. 因为, 所以平面.又平面,所以平面平面. (2)由已知,以为坐标原点,分别
18、以垂直于、向量所在方向作为轴、轴、轴的正方向,建立如图所示的空间直角坐标系,则,, ,. 设平面的一个法向量为,则即,取,得. 设平面的法向量,则即,取,得. 所以, 又二面角为锐角,所以二面角的余弦值为. 【点睛】本题考查了利用线面垂直判定面面垂直、利用空间向量数量积求二面角的余弦值问题.19(1)见解析(2)【解析】分析:(1)根据面面垂直的判定定理即可证明平面ADE平面BDEF;(2)建立空间直角坐标系,利用空间向量法即可求CF与平面ABCD所成角的正弦值;也可以应用常规法,作出线面角,放在三角形当中来求解.详解:()在ABD中,ABD30,由AO2AB2+BD22ABBDcos30,解
19、得BD,所以AB2+BD2=AB2,根据勾股定理得ADB90ADBD.又因为DE平面ABCD,AD平面ABCD,ADDE.又因为BDDED,所以AD平面BDEF,又AD平面ABCD,平面ADE平面BDEF, ()方法一: 如图,由已知可得,则,则三角形BCD为锐角为30的等腰三角形. 则.过点C做,交DB、AB于点G,H,则点G为点F在面ABCD上的投影.连接FG,则,DE平面ABCD,则平面.过G做于点I,则BF平面,即角为二面角CBFD的平面角,则60.则,则.在直角梯形BDEF中,G为BD中点,设 ,则,则. ,则,即CF与平面ABCD所成角的正弦值为()方法二:可知DA、DB、DE两两
20、垂直,以D为原点,建立如图所示的空间直角坐标系D-xyz.设DEh,则D(0,0,0),B(0,0),C(,h).,. 设平面BCF的法向量为m(x,y,z),则所以取x=,所以m(,-1,),取平面BDEF的法向量为n(1,0,0),由,解得,则,又,则,设CF与平面ABCD所成角为,则sin=.故直线CF与平面ABCD所成角的正弦值为 点睛:该题考查的是立体几何的有关问题,涉及到的知识点有面面垂直的判定,线面角的正弦值,在求解的过程中,需要把握面面垂直的判定定理的内容,要明白垂直关系直角的转化,在求线面角的有关量的时候,有两种方法,可以应用常规法,也可以应用向量法.20(1)见解析; (2
21、).【解析】(1)对求导,令,求导研究单调性,分析可得存在使得,即,即得证;(2)分,两种情况讨论,当时,转化利用均值不等式即得证;当,有两个不同的零点,分析可得的最小值为,分,讨论即得解.【详解】(1)由题意,令,则,知为的增函数,因为,所以,存在使得,即所以,当时,为减函数,当时,为增函数,故当时,取得最小值,也就是取得最小值故,于是有,即,所以有,证毕(2)由(1)知,的最小值为,当,即时,为的增函数,所以,由(1)中,得,即故满足题意当,即时,有两个不同的零点,且,即,若时,为减函数,(*)若时,为增函数,所以的最小值为注意到时,且此时,()当时,所以,即,又,而,所以,即由于在下,恒
22、有,所以()当时,所以,所以由(*)知时,为减函数,所以,不满足时,恒成立,故舍去故满足条件综上所述:的取值范围是【点睛】本题考查了函数与导数综合,考查了利用导数研究函数的最值和不等式的恒成立问题,考查了学生综合分析,转化划归,分类讨论,数学运算能力,属于较难题.21(1);(2)【解析】(1)利用两边平方法解含有绝对值的不等式,再根据根与系数的关系求出的值;(2)利用绝对值不等式求出的最小值,把不等式化为只含有的不等式,求出不等式解集即可【详解】(1)不等式,即两边平方整理得由题意知和是方程的两个实数根即,解得(2)因为所以要使不等式恒成立,只需当时,解得,即;当时,解得,即;综上所述,的取值范围是【点睛】本题考查了含有绝对值的不等式解法与应用问题,也考查了分类讨论思想,是中档题22(1)选取方案二更合适;(2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- T/CEMIA 015-2018光纤预制棒用四氯化硅容器清洗技术规范
- T/CECS 10121-2021球墨铸铁聚乙烯复合管
- T/CECS 10085-2020水泥基透水混凝土用胶接剂
- T/CCS 049-2023绿色煤炭资源评价技术规范
- T/CCMA 0062-2018流动式起重机用力矩限制器
- T/CCAS 031-2023水泥工厂生料配料在线分析技术应用指南
- T/CBMCA 022-2021陶瓷岩板加工规范
- T/CBMCA 015-2020陶瓷岩板产品规范
- 2024年度江苏省二级造价工程师之土建建设工程计量与计价实务模拟试题(含答案)
- 租客网java面试题及答案
- 医院药物临床试验伦理委员会伦理审查申请及受理表
- 2021译林版高中英语选择性必修三课文翻译
- 智能网联汽车线控技术课件
- 郑州大学ppt模板
- (完整版)ECRS培训课件
- 学校端午假期致学生家长一封信
- 第1本书出体旅程journeys out of the body精教版2003版
- 塑料制品事业部独立核算体系文件
- 《鸿门宴》话剧剧本
- 灸法操作规程完整
- 金蝶ERP实施-01-10-02供应链系统调研报告
评论
0/150
提交评论