版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知双曲线的焦距为,若的渐近线上存在点,使得经过点所作的圆的两条切线互相垂直,则双曲线的离心率的取值范围是( )ABCD2某网店2019年全年的月收支数据如图所示,则针对2019年这一年的收支情况,下列说法中错误的是( )A月收入的极差
2、为60B7月份的利润最大C这12个月利润的中位数与众数均为30D这一年的总利润超过400万元3已知六棱锥各顶点都在同一个球(记为球)的球面上,且底面为正六边形,顶点在底面上的射影是正六边形的中心,若,则球的表面积为( )ABCD4直线x-3y+3=0经过椭圆x2a2+y2b2=1ab0的左焦点F,交椭圆于A,B两点,交y轴于C点,若FC=2CA,则该椭圆的离心率是()A3-1B3-12C22-2D2-15设是虚数单位,则( )ABCD6设,分别为双曲线(a0,b0)的左、右焦点,过点作圆 的切线与双曲线的左支交于点P,若,则双曲线的离心率为( )ABCD7已知展开式的二项式系数和与展开式中常数
3、项相等,则项系数为( )A10B32C40D808已知分别为双曲线的左、右焦点,点是其一条渐近线上一点,且以为直径的圆经过点,若的面积为,则双曲线的离心率为( )ABCD9如图所示,已知双曲线的右焦点为,双曲线的右支上一点,它关于原点的对称点为,满足,且,则双曲线的离心率是( ).ABCD10设函数满足,则的图像可能是ABCD11已知复数,其中,是虚数单位,则( )ABCD12抛物线方程为,一直线与抛物线交于两点,其弦的中点坐标为,则直线的方程为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13若变量,满足约束条件则的最大值是_.14如图,已知一块半径为2的残缺的半圆形材料,O
4、为半圆的圆心,残缺部分位于过点C的竖直线的右侧,现要在这块材料上裁出一个直角三角形,若该直角三角形一条边在上,则裁出三角形面积的最大值为_.15已知复数对应的点位于第二象限,则实数的范围为_.16函数的定义域为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知数列的前项和为,且满足()求数列的通项公式;()证明:18(12分)某市环保部门对该市市民进行了一次垃圾分类知识的网络问卷调查,每一位市民仅有一次参加机会,通过随机抽样,得到参加问卷调查的人的得分(满分:分)数据,统计结果如下表所示组别频数 (1)已知此次问卷调查的得分服从正态分布,近似为这人得分的平均值
5、(同一组中的数据用该组区间的中点值为代表),请利用正态分布的知识求;(2)在(1)的条件下,环保部门为此次参加问卷调查的市民制定如下奖励方案.()得分不低于的可以获赠次随机话费,得分低于的可以获赠次随机话费;()每次赠送的随机话费和相应的概率如下表.赠送的随机话费/元概率现市民甲要参加此次问卷调查,记为该市民参加问卷调查获赠的话费,求的分布列及数学期望附:,若,则,.19(12分)已知数列的通项,数列为等比数列,且,成等差数列.(1)求数列的通项;(2)设,求数列的前项和.20(12分)根据国家统计局数据,1978年至2018年我国GDP总量从0.37万亿元跃升至90万亿元,实际增长了242倍
6、多,综合国力大幅提升.将年份1978,1988,1998,2008,2018分别用1,2,3,4,5代替,并表示为;表示全国GDP总量,表中,.326.4741.90310209.7614.05(1)根据数据及统计图表,判断与(其中为自然对数的底数)哪一个更适宜作为全国GDP总量关于的回归方程类型?(给出判断即可,不必说明理由),并求出关于的回归方程.(2)使用参考数据,估计2020年的全国GDP总量.线性回归方程中斜率和截距的最小二乘法估计公式分别为:,.参考数据:45678的近似值551484031097298121(12分)已知中,是上一点(1)若,求的长;(2)若,求的值22(10分)
7、已知抛物线的顶点为原点,其焦点关于直线的对称点为,且.若点为的准线上的任意一点,过点作的两条切线,其中为切点.(1)求抛物线的方程;(2)求证:直线恒过定点,并求面积的最小值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1B【解析】由可得;由过点所作的圆的两条切线互相垂直可得,又焦点到双曲线渐近线的距离为,则,进而求解.【详解】,所以离心率,又圆是以为圆心,半径的圆,要使得经过点所作的圆的两条切线互相垂直,必有,而焦点到双曲线渐近线的距离为,所以,即,所以,所以双曲线的离心率的取值范围是.故选:B【点睛】本题考查双曲线的离心率的
8、范围,考查双曲线的性质的应用.2D【解析】直接根据折线图依次判断每个选项得到答案.【详解】由图可知月收入的极差为,故选项A正确;1至12月份的利润分别为20,30,20,10,30,30,60,40,30,30,50,30,7月份的利润最高,故选项B正确;易求得总利润为380万元,众数为30,中位数为30,故选项C正确,选项D错误.故选:.【点睛】本题考查了折线图,意在考查学生的理解能力和应用能力.3D【解析】由题意,得出六棱锥为正六棱锥,求得,再结合球的性质,求得球的半径,利用表面积公式,即可求解.【详解】由题意,六棱锥底面为正六边形,顶点在底面上的射影是正六边形的中心,可得此六棱锥为正六棱
9、锥,又由,所以, 在直角中,因为,所以,设外接球的半径为,在中,可得,即,解得,所以外接球的表面积为.故选:D.【点睛】本题主要考查了正棱锥的几何结构特征,以及外接球的表面积的计算,其中解答中熟记几何体的结构特征,熟练应用球的性质求得球的半径是解答的关键,着重考查了空间想象能力,以及推理与计算能力,属于中档试题.4A【解析】由直线x-3y+3=0过椭圆的左焦点F,得到左焦点为F(-3,0),且a2-b2=3,再由FC=2CA,求得A32,32,代入椭圆的方程,求得a2=33+62,进而利用椭圆的离心率的计算公式,即可求解.【详解】由题意,直线x-3y+3=0经过椭圆的左焦点F,令y=0,解得x
10、=3,所以c=3,即椭圆的左焦点为F(-3,0),且a2-b2=3 直线交y轴于C(0,1),所以,OF=3,OC=1,FC=2,因为FC=2CA,所以FA=3,所以A32,32,又由点A在椭圆上,得3a2+9b2=4 由,可得4a2-24a2+9=0,解得a2=33+62,所以e2=c2a2=633+6=4-23=3-12,所以椭圆的离心率为e=3-1.故选A.【点睛】本题考查了椭圆的几何性质离心率的求解,其中求椭圆的离心率(或范围),常见有两种方法:求出a,c ,代入公式e=ca;只需要根据一个条件得到关于a,b,c的齐次式,转化为a,c的齐次式,然后转化为关于e的方程,即可得e的值(范围
11、)5A【解析】利用复数的乘法运算可求得结果.【详解】由复数的乘法法则得.故选:A.【点睛】本题考查复数的乘法运算,考查计算能力,属于基础题.6C【解析】设过点作圆 的切线的切点为,根据切线的性质可得,且,再由和双曲线的定义可得,得出为中点,则有,得到,即可求解.【详解】设过点作圆 的切线的切点为,所以是中点,.故选:C.【点睛】本题考查双曲线的性质、双曲线定义、圆的切线性质,意在考查直观想象、逻辑推理和数学计算能力,属于中档题.7D【解析】根据二项式定理通项公式可得常数项,然后二项式系数和,可得,最后依据,可得结果.【详解】由题可知:当时,常数项为又展开式的二项式系数和为由所以当时,所以项系数
12、为故选:D【点睛】本题考查二项式定理通项公式,熟悉公式,细心计算,属基础题.8B【解析】根据题意,设点在第一象限,求出此坐标,再利用三角形的面积即可得到结论.【详解】由题意,设点在第一象限,双曲线的一条渐近线方程为,所以,又以为直径的圆经过点,则,即,解得,所以,即,即,所以,双曲线的离心率为.故选:B.【点睛】本题主要考查双曲线的离心率,解决本题的关键在于求出与的关系,属于基础题.9C【解析】易得,又,平方计算即可得到答案.【详解】设双曲线C的左焦点为E,易得为平行四边形,所以,又,故,所以,即,故离心率为.故选:C.【点睛】本题考查求双曲线离心率的问题,关键是建立的方程或不等关系,是一道中
13、档题.10B【解析】根据题意,确定函数的性质,再判断哪一个图像具有这些性质由得是偶函数,所以函数的图象关于轴对称,可知B,D符合;由得是周期为2的周期函数,选项D的图像的最小正周期是4,不符合,选项B的图像的最小正周期是2,符合,故选B11D【解析】试题分析:由,得,则,故选D.考点:1、复数的运算;2、复数的模.12A【解析】设,利用点差法得到,所以直线的斜率为2,又过点,再利用点斜式即可得到直线的方程.【详解】解:设,又,两式相减得:,直线的斜率为2,又过点,直线的方程为:,即,故选:A.【点睛】本题考查直线与抛物线相交的中点弦问题,解题方法是“点差法”,即设出弦的两端点坐标,代入抛物线方
14、程相减后可把弦所在直线斜率与中点坐标建立关系二、填空题:本题共4小题,每小题5分,共20分。139【解析】做出满足条件的可行域,根据图形,即可求出的最大值.【详解】做出不等式组表示的可行域,如图阴影部分所示,目标函数过点时取得最大值,联立,解得,即,所以最大值为9.故答案为:9.【点睛】本题考查二元一次不等式组表示平面区域,利用数形结合求线性目标函数的最值,属于基础题.14【解析】分两种情况讨论:(1)斜边在BC上,设,则,(2)若在若一条直角边在上,设,则,进一步利用导数的应用和三角函数关系式恒等变形和函数单调性即可求出最大值.【详解】(1)斜边在上,设,则,则,从而.当时,此时,符合.(2
15、)若一条直角边在上,设,则,则,由知.,当时,单调递增,当时,单调递减,.当,即时,最大.故答案为:.【点睛】此题考查实际问题中导数,三角函数和函数单调性的综合应用,注意分类讨论把所有情况考虑完全,属于一般性题目.15【解析】由复数对应的点,在第二象限,得,且,从而求出实数的范围【详解】解:复数对应的点位于第二象限,且,故答案为:【点睛】本题主要考查复数与复平面内对应点之间的关系,解不等式,且 是解题的关键,属于基础题16【解析】由题意得,解得定义域为三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(),()见解析【解析】(1)由,分和两种情况,即可求得数列的通项公式;(2)
16、由题,得,利用等比数列求和公式,即可得到本题答案.【详解】()解:由题,得当时,得;当时,整理,得数列是以1为首项,2为公比的等比数列,;()证明:由()知,故故得证【点睛】本题主要考查根据的关系式求通项公式以及利用等比数列的前n项和公式求和并证明不等式,考查学生的运算求解能力和推理证明能力.18(1);(2)见解析.【解析】(1)根据题中所给的统计表,利用公式计算出平均数的值,再利用数据之间的关系将、表示为,利用题中所给数据,以及正态分布的概率密度曲线的对称性,求出对应的概率;(2)根据题意,高于平均数和低于平均数的概率各为,再结合得元、元的概率,分析得出话费的可能数据都有哪些,再利用公式求
17、得对应的概率,进而得出分布列,之后利用离散型随机变量的分布列求出其数学期望.【详解】(1)由题意可得,易知,;(2)根据题意,可得出随机变量的可能取值有、元,.所以,随机变量的分布列如下表所示:所以,随机变量的数学期望为.【点睛】本题考查概率的计算,涉及到平均数的求法、正态分布概率的计算以及离散型随机变量分布列及其数学期望,在解题时要弄清楚随机变量所满足的分布列类型,结合相应公式计算对应事件的概率,考查计算能力,属于中等题.19(1);(2).【解析】(1)根据,成等差数列以及为等比数列,通过直接对进行赋值计算出的首项和公比,即可求解出的通项公式;(2)的通项公式符合等差乘以等比的形式,采用错
18、位相减法进行求和.【详解】(1)数列为等比数列,且,成等差数列.设数列的公比为,解得(2),.【点睛】本题考查等差、等比数列的综合以及错位相减法求和的应用,难度一般.判断是否适合使用错位相减法,可根据数列的通项公式是否符合等差乘以等比的形式来判断.20(1),;(2)148万亿元.【解析】(1)由散点图知更适宜,对两边取自然对数得,令,则,再利用线性回归方程的计算公式计算即可;(2)将代入所求的回归方程中计算即可.【详解】(1)根据数据及图表可以判断,更适宜作为全国GDP总量关于的回归方程.对两边取自然对数得,令,得.因为,所以,所以关于的线性回归方程为,所以关于的回归方程为.(2)将代入,其中,于是2020年的全国GDP总量约
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年全年汽车长期租赁合同版B版
- 2024年债务偿还连带担保合同书版B版
- 2024年企业员工劳动协议条款细则版B版
- 2024年专业鱼塘承包经营合同书样本一
- 2024员工试用期协议书范本
- 2024劳动协议额外条款补充协议
- 2024年企业间借调人员合作协议模板版
- 第一次带军训心得体会篇
- 2024年临床试验合作伙伴权益义务协议一
- 2024年国际技术转让与许可合同
- 【安徽】现代国家级综合档案馆间办公建筑方案
- 2022年物流公司组织架构图及部门职责
- 人教版六年级数学上册第三单元《分数除法》课堂作业设计
- 小学语文新课程标准最新版2022
- 房屋建筑工程质量检测指引
- 小型割草机的设计
- 诉讼材料接收表
- 部编版四年级上册语文第二十六课《西门豹治邺》课文原文及练习题
- 卫生院紫外线消毒登记表
- 2023江苏“小高考”(化学)(2023江苏省普通高中学业水平测试-化学)
- 六年级上册数学课件-6.4 百分数与分数的互化丨苏教版 (共16张PPT)
评论
0/150
提交评论