版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知函数且,则实数的取值范围是( )ABCD2已知向量,则向量在向量方向上的投影为( )ABCD3四人并排坐在连号的四个座位上,其中与不相邻的所有不同的坐法种数是( )A1
2、2B16C20D84设函数,若函数有三个零点,则()A12B11C6D35已知,函数,若函数恰有三个零点,则( )ABCD6执行如下的程序框图,则输出的是( )ABCD7设是虚数单位,则( )ABCD8已知向量,是单位向量,若,则( )ABCD9若满足,且目标函数的最大值为2,则的最小值为( )A8B4CD610已知双曲线的右焦点为,过的直线交双曲线的渐近线于两点,且直线的倾斜角是渐近线倾斜角的2倍,若,则该双曲线的离心率为( )ABCD11台球是一项国际上广泛流行的高雅室内体育运动,也叫桌球(中国粤港澳地区的叫法)、撞球(中国台湾地区的叫法)控制撞球点、球的旋转等控制母球走位是击球的一项重要
3、技术,一次台球技术表演节目中,在台球桌上,画出如图正方形ABCD,在点E,F处各放一个目标球,表演者先将母球放在点A处,通过击打母球,使其依次撞击点E,F处的目标球,最后停在点C处,若AE=50cmEF=40cmFC=30cm,AEF=CFE=60,则该正方形的边长为( )A50cmB40cmC50cmD20cm12已知抛物线的焦点与双曲线的一个焦点重合,且抛物线的准线被双曲线截得的线段长为,那么该双曲线的离心率为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13设满足约束条件,则的取值范围为_.14设P为有公共焦点的椭圆与双曲线的一个交点,且,椭圆的离心率为,双曲线的离心率为
4、,若,则_.15已知二项式ax-1x6的展开式中的常数项为-160,则a=_16已知函数,若方程的解为,(),则_;_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知抛物线上一点到焦点的距离为2,(1)求的值与抛物线的方程;(2)抛物线上第一象限内的动点在点右侧,抛物线上第四象限内的动点,满足,求直线的斜率范围.18(12分)如图,内接于圆O,AB是圆O的直径,四边形DCBE为平行四边形,平面ABC,(1)求证:平面ACD;(2)设,表示三棱锥B-ACE的体积,求函数的解析式及最大值19(12分)如图,平面四边形为直角梯形,将绕着翻折到.(1)为上一点,且,当平
5、面时,求实数的值;(2)当平面与平面所成的锐二面角大小为时,求与平面所成角的正弦.20(12分)已知,(其中).(1)求;(2)求证:当时,21(12分)已知椭圆E:()的离心率为,且短轴的一个端点B与两焦点A,C组成的三角形面积为.()求椭圆E的方程;()若点P为椭圆E上的一点,过点P作椭圆E的切线交圆O:于不同的两点M,N(其中M在N的右侧),求四边形面积的最大值.22(10分)在开展学习强国的活动中,某校高三数学教师成立了党员和非党员两个学习组,其中党员学习组有4名男教师、1名女教师,非党员学习组有2名男教师、2名女教师,高三数学组计划从两个学习组中随机各选2名教师参加学校的挑战答题比赛
6、.(1)求选出的4名选手中恰好有一名女教师的选派方法数;(2)记X为选出的4名选手中女教师的人数,求X的概率分布和数学期望.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1B【解析】构造函数,判断出的单调性和奇偶性,由此求得不等式的解集.【详解】构造函数,由解得,所以的定义域为,且,所以为奇函数,而,所以在定义域上为增函数,且.由得,即,所以.故选:B【点睛】本小题主要考查利用函数的单调性和奇偶性解不等式,属于中档题.2A【解析】投影即为,利用数量积运算即可得到结论.【详解】设向量与向量的夹角为,由题意,得,所以,向量在向量方向上
7、的投影为.故选:A.【点睛】本题主要考察了向量的数量积运算,难度不大,属于基础题.3A【解析】先将除A,B以外的两人先排,再将A,B在3个空位置里进行插空,再相乘得答案.【详解】先将除A,B以外的两人先排,有种;再将A,B在3个空位置里进行插空,有种,所以共有种.故选:A【点睛】本题考查排列中不相邻问题,常用插空法,属于基础题.4B【解析】画出函数的图象,利用函数的图象判断函数的零点个数,然后转化求解,即可得出结果【详解】作出函数的图象如图所示,令,由图可得关于的方程的解有两个或三个(时有三个,时有两个),所以关于的方程只能有一个根(若有两个根,则关于的方程有四个或五个根),由,可得的值分别为
8、,则故选B【点睛】本题考查数形结合以及函数与方程的应用,考查转化思想以及计算能力,属于常考题型.5C【解析】当时,最多一个零点;当时,利用导数研究函数的单调性,根据单调性画函数草图,根据草图可得【详解】当时,得;最多一个零点;当时,当,即时,在,上递增,最多一个零点不合题意;当,即时,令得,函数递增,令得,函数递减;函数最多有2个零点;根据题意函数恰有3个零点函数在上有一个零点,在,上有2个零点,如图:且,解得,故选【点睛】遇到此类问题,不少考生会一筹莫展.由于方程中涉及两个参数,故按“一元化”想法,逐步分类讨论,这一过程中有可能分类不全面、不彻底.6A【解析】列出每一步算法循环,可得出输出结
9、果的值.【详解】满足,执行第一次循环,;成立,执行第二次循环,;成立,执行第三次循环,;成立,执行第四次循环,;成立,执行第五次循环,;成立,执行第六次循环,;成立,执行第七次循环,;成立,执行第八次循环,;不成立,跳出循环体,输出的值为,故选:A.【点睛】本题考查算法与程序框图的计算,解题时要根据算法框图计算出算法的每一步,考查分析问题和计算能力,属于中等题.7A【解析】利用复数的乘法运算可求得结果.【详解】由复数的乘法法则得.故选:A.【点睛】本题考查复数的乘法运算,考查计算能力,属于基础题.8C【解析】设,根据题意求出的值,代入向量夹角公式,即可得答案;【详解】设,是单位向量,,,联立方
10、程解得:或当时,;当时,;综上所述:.故选:C.【点睛】本题考查向量的模、夹角计算,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力,求解时注意的两种情况.9A【解析】作出可行域,由,可得.当直线过可行域内的点时,最大,可得.再由基本不等式可求的最小值.【详解】作出可行域,如图所示由,可得.平移直线,当直线过可行域内的点时,最大,即最大,最大值为2.解方程组,得.,当且仅当,即时,等号成立.的最小值为8.故选:.【点睛】本题考查简单的线性规划,考查基本不等式,属于中档题.10B【解析】先求出直线l的方程为y(xc),与yx联立,可得A,B的纵坐标,利用,求出a,b的关系,即可
11、求出该双曲线的离心率【详解】双曲线1(ab0)的渐近线方程为yx,直线l的倾斜角是渐近线OA倾斜角的2倍,kl,直线l的方程为y(xc),与yx联立,可得y或y,2,ab,c2b,e故选B【点睛】本题考查双曲线的简单性质,考查向量知识,考查学生的计算能力,属于中档题11D【解析】过点做正方形边的垂线,如图,设,利用直线三角形中的边角关系,将用表示出来,根据,列方程求出,进而可得正方形的边长.【详解】过点做正方形边的垂线,如图,设,则,则,因为,则,整理化简得,又,得 ,.即该正方形的边长为.故选:D.【点睛】本题考查直角三角形中的边角关系,关键是要构造直角三角形,是中档题.12A【解析】由抛物
12、线的焦点得双曲线的焦点,求出,由抛物线准线方程被曲线截得的线段长为,由焦半径公式,联立求解.【详解】解:由抛物线,可得,则,故其准线方程为,抛物线的准线过双曲线的左焦点,抛物线的准线被双曲线截得的线段长为,又,则双曲线的离心率为故选:【点睛】本题考查抛物线的性质及利用过双曲线的焦点的弦长求离心率. 弦过焦点时,可结合焦半径公式求解弦长二、填空题:本题共4小题,每小题5分,共20分。13【解析】由题意画出可行域,转化目标函数为,数形结合即可得到的最值,即可得解.【详解】由题意画出可行域,如图:转化目标函数为,通过平移直线,数形结合可知:当直线过点A时,直线截距最大,z最小;当直线过点C时,直线截
13、距最小,z最大.由可得,由可得,当直线过点时,;当直线过点时,所以.故答案为:.【点睛】本题考查了简单的线性规划,考查了数形结合思想,属于基础题.14【解析】设根据椭圆的几何性质可得,根据双曲线的几何性质可得,,即故答案为152【解析】在二项展开式的通项公式中,令x的幂指数等于0,求出r的值,即可求得常数项,再根据常数项等于-160求得实数a的值【详解】二项式(ax-1x)6的展开式中的通项公式为Tr+1=C6r(-1)ra6-rx6-2r,令6-2r=0,求得r=3,可得常数项为-C63a3=-160,a=2,故答案为:2【点睛】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数
14、的性质,属于基础题16 【解析】求出在 上的对称轴,依据对称性可得的值;由可得,依据可求出的值.【详解】解:令,解得 因为,所以 关于 对称.则.由,则由可知,又因为 ,所以,则,即故答案为: ;.【点睛】本题考查了三角函数的对称轴,考查了诱导公式,考查了同角三角函数的基本关系.本题的易错点在于没有正确判断的取值范围,导致求出.在求的对称轴时,常用整体代入法,即令 进行求解.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1)1;(2)【解析】(1)根据点到焦点的距离为2,利用抛物线的定义得,再根据点在抛物线上有,列方程组求解,(2)设,根据,再由,求得,当,即时,直线斜率
15、不存在;当时,令,利用导数求解,【详解】(1)因为点到焦点的距离为2,即点到准线的距离为2,得,又,解得,所以抛物线方程为(2)设,由由,则当,即时,直线斜率不存在;当时,令,所以在上分别递减则【点睛】本题主要考查抛物线定义及方程的应用,还考查了分类讨论的思想和运算求解的能力,属于中档题,18(1)见解析(2),最大值【解析】(1)先证明,故平面ADC由,即得证;(2)可证明平面ABC,结合条件表示出,利用均值不等式,即得解.【详解】(1)证明:四边形DCBE为平行四边形,平面ABC,平面ABC,AB是圆O的直径,且,平面ADC,平面ADC,平面ADC(2)解平面ABC,平面ABC在中,在中,
16、当且仅当,即时取等号,当时,体积有最大值【点睛】本题考查了线面垂直的证明和三棱锥的体积,考查了学生逻辑推理,空间想象,转化划归,数学运算的能力,属于中档题.19(1);(2).【解析】(1)连接交于点,连接,利用线面平行的性质定理可推导出,然后利用平行线分线段成比例定理可求得的值;(2)取中点,连接、,过点作,则,作于,连接,推导出,可得出为平面与平面所成的锐二面角,由此计算出、,并证明出平面,可得出直线与平面所成的角为,进而可求得与平面所成角的正弦值.【详解】(1)连接交于点,连接,平面,平面,平面平面,在梯形中,则,所以,;(2)取中点,连接、,过点作,则,作于,连接. 为的中点,且,且,
17、所以,四边形为平行四边形,由于,为的中点,所以,同理,平面,为面与面所成的锐二面角,则,平面,平面,面,为与底面所成的角,.在中,.因此,与平面所成角的正弦值为.【点睛】本题考查利用线面平行的性质求参数,同时也考查了线面角的计算,涉及利用二面角求线段长度,考查推理能力与计算能力,属于中等题.20(1)(2)见解析【解析】(1)取,则;取,则,; (2)要证,只需证,当时,;假设当时,结论成立,即,两边同乘以3 得:而,即时结论也成立,当时,成立.综上原不等式获证.21();()4.【解析】() 结合已知可得,求出a,b的值,即可得椭圆方程;()由题意可知,直线的斜率存在,设出直线方程,联立直线方程与椭圆方程,利用判别式等于0可得,联立直线方程与圆的方程,结合根与系数的关系求得,利用弦长公式及点到直线的距离公式,求出,得到,整理后利用基本不等式求最值.【详解】解:()可得,结合,解得,得椭圆方程;()易知直线的斜率k存在,设:,由,得,由,得,设点O到直线:的距离为d,由,得, ,而,易知,则,四边形的面积当且仅当,即时取“”.四边形面积的最大值为4
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 九年级化学上册 第五单元 定量研究化学反应教学实录 鲁教版
- 根茎叶(教学实录)-2023-2024学年科学三年级下册人教鄂教版
- NPD7155-生命科学试剂-MCE
- 草地保护学知到智慧树章节测试课后答案2024年秋中国农业大学
- 唐山科技职业技术学院《模具设计课程设计》2023-2024学年第一学期期末试卷
- 八年级体育 跨越式跳高体育课教学实录 人教新课标版
- 唐山工业职业技术学院《医学信息系统设计》2023-2024学年第一学期期末试卷
- 泰州职业技术学院《分析化学韩》2023-2024学年第一学期期末试卷
- 中国热压手套项目投资可行性研究报告
- 中国工业离心泵项目投资可行性研究报告
- 高考英语高频短语按字母排序
- 《地理信息系统》课程中的思政元素科技服务于人与自然和谐共生
- 运维安全教育培训内容
- 校招面试官培训课件
- 初中九年级英语课件ReadingThe world in danger 市赛一等奖
- 项目电气工程师总结
- 陈赫贾玲小品《欢喜密探》台词剧本
- 2023招聘专员个人年终总结
- 国际邮轮产业及未来邮轮
- 水工建筑物考试试题及答案
- 多元回归分析论文
评论
0/150
提交评论