甘肃省会宁县2022年高三3月份第一次模拟考试数学试卷含解析_第1页
甘肃省会宁县2022年高三3月份第一次模拟考试数学试卷含解析_第2页
甘肃省会宁县2022年高三3月份第一次模拟考试数学试卷含解析_第3页
甘肃省会宁县2022年高三3月份第一次模拟考试数学试卷含解析_第4页
甘肃省会宁县2022年高三3月份第一次模拟考试数学试卷含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡

2、一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1复数满足,则( )ABCD2如图,在三棱锥中,平面,分别是棱,的中点,则异面直线与所成角的余弦值为A0BCD13设直线过点,且与圆:相切于点,那么( )AB3CD14已知直线是曲线的切线,则( )A或1B或2C或D或15在正方体中,点、分别为、的中点,过点作平面使平面,平面若直线平面,则的值为( )ABCD6已知集合,则集合( )ABCD7已知为抛物线的准线,抛物线上的点到的距离为,点的坐标为,则的最小值是( )AB4C2D8函数的部分图象如图中实线所示,图中圆与的图象交于两点,且

3、在轴上,则下列说法中正确的是A函数的最小正周期是B函数的图象关于点成中心对称C函数在单调递增D函数的图象向右平移后关于原点成中心对称9已知无穷等比数列的公比为2,且,则( )ABCD10若实数满足不等式组则的最小值等于( )ABCD11设a,b都是不等于1的正数,则“”是“”的()A充要条件B充分不必要条件C必要不充分条件D既不充分也不必要条件12已知三棱锥的四个顶点都在球的球面上,平面,是边长为的等边三角形,若球的表面积为,则直线与平面所成角的正切值为()ABCD二、填空题:本题共4小题,每小题5分,共20分。13过直线上一动点向圆引两条切线MA,MB,切点为A,B,若,则四边形MACB的最

4、小面积的概率为_14各项均为正数的等比数列中,为其前项和,若,且,则公比的值为_.15已知双曲线的一条渐近线为,且经过抛物线的焦点,则双曲线的标准方程为_.16设集合,则_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)选修4-5:不等式选讲设函数.(1)当时,求不等式的解集;(2)若在上恒成立,求实数的取值范围.18(12分)已知函数(1)若关于的不等式的整数解有且仅有一个值,当时,求不等式的解集;(2)已知,若,使得成立,求实数的取值范围19(12分)在以为顶点的五面体中,底面为菱形,二面角为直二面角.()证明:;()求二面角的余弦值.20(12分)已知函数,

5、且(1)当时,求函数的减区间;(2)求证:方程有两个不相等的实数根;(3)若方程的两个实数根是,试比较,与的大小,并说明理由21(12分)已知,函数的最小值为1(1)证明:(2)若恒成立,求实数的最大值22(10分)已知函数.(1)解不等式;(2)若函数的最小值为,求的最小值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1C【解析】利用复数模与除法运算即可得到结果.【详解】解: ,故选:C【点睛】本题考查复数除法运算,考查复数的模,考查计算能力,属于基础题.2B【解析】根据题意可得平面,则即异面直线与所成的角,连接CG,在中,易

6、得,所以,所以,故选B3B【解析】过点的直线与圆:相切于点,可得.因此,即可得出.【详解】由圆:配方为,半径.过点的直线与圆:相切于点,;故选:B.【点睛】本小题主要考查向量数量积的计算,考查圆的方程,属于基础题.4D【解析】求得直线的斜率,利用曲线的导数,求得切点坐标,代入直线方程,求得的值.【详解】直线的斜率为,对于,令,解得,故切点为,代入直线方程得,解得或1.故选:D【点睛】本小题主要考查根据切线方程求参数,属于基础题.5B【解析】作出图形,设平面分别交、于点、,连接、,取的中点,连接、,连接交于点,推导出,由线面平行的性质定理可得出,可得出点为的中点,同理可得出点为的中点,结合中位线

7、的性质可求得的值.【详解】如下图所示:设平面分别交、于点、,连接、,取的中点,连接、,连接交于点,四边形为正方形,、分别为、的中点,则且,四边形为平行四边形,且,且,且,则四边形为平行四边形,平面,则存在直线平面,使得,若平面,则平面,又平面,则平面,此时,平面为平面,直线不可能与平面平行,所以,平面,平面,平面,平面平面,所以,四边形为平行四边形,可得,为的中点,同理可证为的中点,因此,.故选:B.【点睛】本题考查线段长度比值的计算,涉及线面平行性质的应用,解答的关键就是找出平面与正方体各棱的交点位置,考查推理能力与计算能力,属于中等题.6D【解析】弄清集合B的含义,它的元素x来自于集合A,

8、且也是集合A的元素.【详解】因,所以,故,又, ,则,故集合.故选:D.【点睛】本题考查集合的定义,涉及到解绝对值不等式,是一道基础题.7B【解析】设抛物线焦点为,由题意利用抛物线的定义可得,当共线时,取得最小值,由此求得答案.【详解】解:抛物线焦点,准线,过作交于点,连接由抛物线定义,当且仅当三点共线时,取“”号,的最小值为.故选:B.【点睛】本题主要考查抛物线的定义、标准方程,以及简单性质的应用,体现了数形结合的数学思想,属于中档题.8B【解析】根据函数的图象,求得函数,再根据正弦型函数的性质,即可求解,得到答案【详解】根据给定函数的图象,可得点的横坐标为,所以,解得,所以的最小正周期,

9、不妨令,由周期,所以,又,所以,所以,令,解得,当时,即函数的一个对称中心为,即函数的图象关于点成中心对称故选B【点睛】本题主要考查了由三角函数的图象求解函数的解析式,以及三角函数的图象与性质,其中解答中根据函数的图象求得三角函数的解析式,再根据三角函数的图象与性质求解是解答的关键,着重考查了数形结合思想,以及运算与求解能力,属于基础题9A【解析】依据无穷等比数列求和公式,先求出首项,再求出,利用无穷等比数列求和公式即可求出结果。【详解】因为无穷等比数列的公比为2,则无穷等比数列的公比为。由有,解得,所以,故选A。【点睛】本题主要考查无穷等比数列求和公式的应用。10A【解析】首先画出可行域,利

10、用目标函数的几何意义求的最小值【详解】解:作出实数,满足不等式组表示的平面区域(如图示:阴影部分)由得,由得,平移,易知过点时直线在上截距最小,所以故选:A【点睛】本题考查了简单线性规划问题,求目标函数的最值先画出可行域,利用几何意义求值,属于中档题11C【解析】根据对数函数以及指数函数的性质求解a,b的范围,再利用充分必要条件的定义判断即可【详解】由“”,得,得或或,即或或,由,得,故“”是“”的必要不充分条件,故选C【点睛】本题考查必要条件、充分条件及充分必要条件的判断方法,考查指数,对数不等式的解法,是基础题12C【解析】设为中点,先证明平面,得出为所求角,利用勾股定理计算,得出结论【详

11、解】设分别是的中点平面 是等边三角形 又平面 为与平面所成的角是边长为的等边三角形,且为所在截面圆的圆心球的表面积为 球的半径平面 本题正确选项:【点睛】本题考查了棱锥与外接球的位置关系问题,关键是能够通过垂直关系得到直线与平面所求角,再利用球心位置来求解出线段长,属于中档题二、填空题:本题共4小题,每小题5分,共20分。13.【解析】先求圆的半径, 四边形的最小面积,转化为的最小值为,求出切线长的最小值,再求的距离也就是圆心到直线的距离,可解得的取值范围,利用几何概型即可求得概率【详解】由圆的方程得,所以圆心为,半径为,四边形的面积,若四边形的最小面积,所以的最小值为,而,即的最小值,此时最

12、小为圆心到直线的距离,此时,因为,所以,所以的概率为【点睛】本题考查直线与圆的位置关系,及与长度有关的几何概型,考查了学生分析问题的能力,难度一般.14【解析】将已知由前n项和定义整理为,再由等比数列性质求得公比,最后由数列各项均为正数,舍根得解.【详解】因为即又等比数列各项均为正数,故故答案为:【点睛】本题考查在等比数列中由前n项和关系求公比,属于基础题.15【解析】设以直线为渐近线的双曲线的方程为,再由双曲线经过抛物线焦点,能求出双曲线方程【详解】解:设以直线为渐近线的双曲线的方程为,双曲线经过抛物线焦点,双曲线方程为,故答案为:【点睛】本题主要考查双曲线方程的求法,考查抛物线、双曲线简单

13、性质的合理运用,属于中档题16【解析】先解不等式,再求交集的定义求解即可.【详解】由题,因为,解得,即,则,故答案为:【点睛】本题考查集合的交集运算,考查解一元二次不等式.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1);(2)【解析】(1)当时,将原不等式化简后两边平方,由此解出不等式的解集.(2)对分成三种情况,利用零点分段法去绝对值,将表示为分段函数的形式,根据单调性求得的取值范围.【详解】(1)时,可得,即,化简得:,所以不等式的解集为.(2)当时,由函数单调性可得,解得;当时,所以符合题意;当时,由函数单调性可得,解得综上,实数的取值范围为【点睛】本小题主要考

14、查含有绝对值不等式的解法,考查不等式恒成立问题的求解,属于中档题.18(1) (2)【解析】(1)求解不等式,结合整数解有且仅有一个值,可得,分类讨论,求解不等式,即得解;(2)转化,使得成立为,利用不等式性质,求解二次函数最小值,代入解不等式即可.【详解】(1)不等式,即,所以,由,解得因为,所以,当时,不等式等价于或或即或或,故,故不等式的解集为(2)因为,由,可得,又由,使得成立,则,解得或故实数的取值范围为【点睛】本题考查了绝对值不等式的求解和恒成立问题,考查了学生转化划归,分类讨论,数学运算的能力,属于中档题.19()见解析()【解析】()连接交于点,取中点,连结,证明平面得到答案.

15、()分别以为轴建立如图所示的空间直角坐标系,平面的法向量为,平面的法向量为,计算夹角得到答案.【详解】()连接交于点,取中点,连结因为为菱形,所以.因为,所以. 因为二面角为直二面角,所以平面平面,且平面平面,所以平面所以 因为所以是平行四边形,所以. 所以,所以,所以平面,又平面,所以. ()由()可知两两垂直,分别以为轴建立如图所示的空间直角坐标系. 设 设平面的法向量为,由,取.平面的法向量为 . 所以二面角余弦值为.【点睛】本题考查了线线垂直,二面角,意在考查学生的计算能力和空间想象能力.20(1)(2)详见解析(3)【解析】试题分析:(1)当时,由得减区间;(2)因为,所以,因为所以,方程有两个不相等的实数根;(3)因为,所以试题解析:(1)当时,由得减区间; (2)法1:, 所以,方程有两个不相等的实数根; 法2:, ,是开口向上的二次函数,所以,方程有两个不相等的实数根; (3)因为, , 又在和增,在减,所以 考点:利用导数求函数减区间,二次函数与二次方程关系21(1)2;(2)【解析】分析:(1)将转化为分段函数,求函数的最小值(2)分离参数,利用基本不等式证明即可详解:()证明:,显然在上单调递减,在上单调递增,所以的最小值为,即()因为恒成立,所以恒成立,当且仅当时,取得最小值,所以,即实数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论