行程问题_环形路教师版_第1页
行程问题_环形路教师版_第2页
行程问题_环形路教师版_第3页
行程问题_环形路教师版_第4页
行程问题_环形路教师版_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、WORD.PAGE- 7 - / NUMPAGES7行程问题环形路(教师版)一、本讲知识点在环行道路上的行程问题本质上讲是追与问题或相遇问题。当二人(或物)同向运动就是追与问题,追与距离是二人初始距离与环形道路之长的倍数之和;当二人(或物)反向运动时就是相遇问题,相遇距离是二人从出发到相遇所行路程和。二、本讲经典例题铺垫如下图,两名运动员在沿湖周长为2250米的环形跑道上练习长跑。甲每分钟跑250米,乙每分钟跑200米。两人同时同地同向出发,多少分钟后甲第1次追上乙?若两人同时同地反向出发,多少分钟后甲、乙第1次相遇?分析与解答:2250(250-200)=225050=45(分钟),即45分

2、钟后甲第1次追上乙;2250(250+200)=2250450=5(分钟),即5分钟后甲、乙第1次相遇.例1如下图,两名运动员在沿湖的环形跑道上练习长跑。甲每分钟跑250米,乙每分钟跑200米。两人同时同地同向出发,45分钟后甲追上了乙。如果两人同时同地反向而跑,经过多少分钟后两人相遇?(2)分析与解答:根据图(1)用追与问题公式求出环形跑道的长,因从同一点出发,距离差=跑道长。(250-200)45=2250(米)。 同理,在环形跑道上,若反向而行,从同一点出发两人相遇所经过的路程和=跑道长。如图(2),2250(250+200)=5(分钟)即经过5分钟两人相遇。随堂练习1如下图,两名运动员

3、在沿湖的环形跑道上练习长跑。甲每分钟跑250米,乙每分钟跑200米。两人同时同地同向出发,54分钟后甲追上乙。如果两人同时同地反向而跑,经过多少分钟后两人相遇?分析与解答:具体分析见例题。 环形跑道周长:(250-200)54=2700(米), 两人相遇时间:2700(250+200)=2700450=6(分钟), 即经过6分钟后两人相遇。拓展甲、乙两运动员在周长为400米环形跑道上同向竞走,已知乙的平均速度是每分钟80米,甲的平均速度是乙的1.25倍,甲在乙前面100米处。问几分钟后,甲第一次追上乙?分析与解答:具体分析过程略。15分钟。铺垫下图是一个圆形中央花园,A、B是直径的两端,小军在

4、A点,小勇在B点,同时出发相向而行。他俩第1次相遇时,小军走了50米,当他们第2次相遇时,小军走了多少米?分析与解答:第1次相遇,俩人合起来走了半周长,从1次相遇开始到第2次相遇两人共走了一周长,两次共走了一周半。所以,小军从开始到第2次相遇走了50米的3倍,即走了503=150(米)。例2如下图,是一个圆形中央花园,A、B是直径的两端,小军在A点,小勇在B点,同时出发相向而行。他俩第1次在C点相遇,C点离A点有50米;第二次在D点相遇,D离B有30米。问这个花园一周长多少米?分析与解答:第1次相遇,俩人合起来走了半周长,从C点开始第2次在D点相遇两人共走了一周长,两次共走了一周半。小军从AC

5、D走了50米的3倍,即走了503=150(米)。去掉BD之间的距离,就是半个圆周的长,所以一周的长度为(150-30)2=240(米)。随堂练习2如下图,A、B是圆直径的两端点,亮亮在点A,明明在点B,相向而行。他们在C点第一次相遇,C点离A点100米;在D点第二次相遇,D点离B点80米。求圆的周长。分析与解答:具体分析过程见例题。440米。拓展如下图,在一圆形跑道上。小明从A点,小强从B点同时出发,相向行走。6分钟后,小明与小强相遇,再过4分钟,小明到达B点,又再过8分钟,小明与小强再次相遇。问:小明环行一周要多长时间?分析与解答:这是一个相遇问题,因为两人6分钟相遇,且再过4分钟小明到达B

6、点,所以,小明走4分钟的路程相当于小强走6分钟的路程。从第一次相遇到再相遇小明走了4+8=12分钟,当然小强也走了12分钟,但他走的路程只相当于小明走8分钟的路程,再次相遇,一定是两人合走了一圈,因此小明走一圈需12+8=20分钟。铺垫如下图三个环形跑道相切排列,每个环形跑道周长均为210厘米。甲、乙两只爬虫分别从A、B两地按箭头所示方向出发,甲爬虫绕1、2号环行跑道作“8”字型循环运动,乙爬虫绕3、2号环行跑道作“8”字型循环运动,已知甲、乙两只爬虫的速度都是每分钟17.5厘米。问:甲、乙两只爬虫多少分钟后第一次相遇?分析与解答:由题意可知,甲、乙爬虫第一次相遇走的距离是一周半,即210+2

7、102=315厘米。所以第一次相遇所用时间为315(17.5+17.5)=9(分钟)。例3如下图三个环形跑道相切排列,每个环形跑道周长均为210厘米。甲、乙两只爬虫分别从A、B两地按箭头所示方向出发,甲爬虫绕1、2号环行跑道作“8”字型循环运动,乙爬虫绕3、2号环行跑道作“8”字型循环运动,已知甲、乙两只爬虫的速度都是每分钟17.5厘米。问:甲、乙两爬虫多少分钟后第二次相遇?分析与解答:解法一:由“铺垫”知,甲、乙两爬虫第一次相遇用9分钟。又知甲、乙两爬虫从第一次相遇到第二次相遇又走了一个圆周。所以第一次相遇到第二次再相遇所用时间为:210(17.5+17.5)=21035=6(分钟)。即甲、

8、乙两爬虫用15(9+6=15)分钟后第二次相遇。 解法二:因为甲、乙两爬虫的速度一样,所以,甲、乙两爬虫第二次相遇时,甲、乙爬虫分别爬了周,即210=262.5厘米。262.517.5=15(分钟),即甲、乙两爬虫15分钟后第二次相遇。 注:这种解法用到了小数和分数的乘除法知识,超出了五年级学生的认知水平。随堂练习3如下图,三个环形跑道相切排列。甲、乙两只爬虫分别从A、B两地按箭头所示方向出发,甲爬虫绕1、2号环行跑道作“8”字型循环运动,乙爬虫绕3、2号环行跑道作“8”字型循环运动,已知甲、乙两只爬虫的速度都是每分钟20厘米,甲、乙两只爬虫爬行20分钟后第二次相遇,问每个环形跑道的周长为多少

9、厘米?分析与解答:甲、乙两爬虫第二次相遇总爬行的距离为:(20+20)20=800(厘米)由题意与图可知:甲、乙两爬虫第二次相遇时,共爬行的距离为5个半周长。所以每个环形跑道的周长为:80052=320(厘米)。拓展如下图,三个环行跑道相切排列,每个环行跑道周长均为210厘米。甲、乙两只爬虫分别从A、B两地按箭头所示方向出发,甲爬虫绕1、2号环行跑道作“8”字型循环运动,乙爬虫绕3、2号环行跑道作“8”字型循环运动,已知甲、乙两只爬虫的速度分别是每分钟20、15厘米。问甲、乙两爬虫第二次相遇时,甲爬虫爬了多少厘米?分析与解答:具体分析过程略。300厘米。铺垫有一条长500米的环形跑道,小军从跑

10、道上某一点出发逆时针跑步,他总共跑了5525米。问:小军是在离起点多少米处停下来的?分析与解答:因为5525500=1125(米),所以5525米相当于11圈余25米,即小军是在离起点25米处停下来的。例4甲、乙从360米的环行跑道上的同一地点同向跑步。甲每分钟跑305米,乙每分钟跑275米。两人起跑后,第一次相遇在离起点多少米处?分析与解答:甲第一次追上乙需用时间360(305-275)=36030=12(分),第一次相遇甲跑的路程30512=3660(米),3660米相当于10圈60米(3660360=1060),所以第一次相遇在离起点60米处。随堂练习4甲、乙从1740米的环行跑道上的同

11、一地点反向跑步。甲每分钟跑300米,乙每分钟跑280米。两人同时起跑后,第一次相遇在离起点多少米处?分析与解答:甲、乙第一次相遇用时间1740(300+280)=1740580=3(分钟),相遇时乙跑的路程2803=840(米)。(注:椭圆上两点间的距离是短弧的长)所以第一次相遇离起点840米。拓展如下图,沿着长为70米的正方形,按逆时针方向,甲从A出发,每分钟走65米,乙从B出发,每分钟走72米。当乙第一次追上甲时是在正方形的哪一条边上?分析与解答:由题意可知,这是乙追甲的追与问题。因此甲在乙前方703=210米。乙第一次追上甲时用时间:210(72-65)=2107=30(分钟)。乙追上甲

12、时形的路程:7230=2160(米)。2160=(47+2)70+60(米),即,乙走了4圈后又跑了两条边BC、CD,在AD距D点60米处追上甲。故,乙第一次追上甲时是在AD边上。铺垫甲、乙两名运动员的速度和是800米/分,速度差是100米/分,且已知甲运动员比乙运动员跑得快,问甲、乙两名运动员的速度各是多少?分析与解答:甲运动员的速度:(800+100)2=450米/分,乙运动员的速度:(800-100)2=350米/分。例5有一条长500米的环行跑道。甲、乙两人同时从跑道上某一点出发,反向而跑,1分钟后相遇;如果两人同向而跑,则10分钟后相遇。已知甲跑的比乙快。问甲、乙两人每分钟各跑多少米

13、?分析与解答:甲、乙的速度和为5001=500米/分。甲、乙的速度差为50010=50米/分,所以甲的速度为(500+50)2=275米/分,乙的速度为500-275=225米/分。随堂练习5有一条沿湖的环行跑道长1120米。甲、乙两人同时从跑道上某一点出发,如果同向而跑,25分钟相遇;如果两人反向而跑则2分钟后相遇。又已知乙比甲跑得快。问甲、乙每分钟各跑多少米?分析与解答:甲、乙两人的速度差112028=40米/分,甲、乙两人的速度和11202=560米/分.又因为乙比甲跑得快,所以,甲的速度:(560-40)2=260米/分;乙的速度:(560+40)2=300米/分.拓展一个圆的周长90

14、厘米,甲、乙两只爬虫从同一地点同时爬行,若反向而爬,10分钟后相遇;若同向而爬,90分钟后相遇。又已知甲爬虫比乙爬虫爬得快。问甲、乙两爬虫每秒钟各爬多少米?分析与解答:具体分析过程见例题。甲爬虫5厘米/秒,乙爬虫4厘米/秒。铺垫小明从A点出发,沿400米环行跑道行走,每分钟走80米,问小明第二次出现在A点时用多少分钟?(不算起始时在A点)分析与解答:小明第一次出现在A点用时间:40080=5(分钟),所以第二次出现在A点用时间:52=10(分钟),例6甲、乙两人同时从A点反向出发,沿400米环行跑道行走,甲每分钟走80米,乙每分钟走50米,这两人至少用多少分钟再在A点相遇?分析与解答:甲第一次

15、出现在A点用时间40080=5(分钟),以后每隔5分钟就会出现在A点一次;乙第一次出现在A点用时间40050=8(分钟),以后每隔8分钟就会出现在A点一次。如下表:第一次第二次第三次第四次第五次第六次第七次第八次甲出现在A点时间(分)5101522025303540乙出现在A点时间(分)81624340485664由上表可知,当40分钟时,甲、乙同时第一次出现在A点。注:此题也可用最小公倍数的知识解答。随堂练习6有一条长480米的环行跑道,甲、乙两人同时从跑道上的A点同向出发行走,甲每分钟走60米,乙每分钟走80米。这两人至少用多少分钟再在A点相遇?分析与解答:具体分析过程见例题。甲回到A点用

16、的时间:48060=8(分钟);乙回到A点用的时间:48080=6(分钟)。8和6的最小公倍数是24.故,这两个人至少24分钟用再在A点相遇。拓展有甲、乙、丙三个人,甲每分钟走120米,乙每分钟走100米,丙每分钟走70米。如果三个人同时同向从同地出发,沿周长是300米的圆形跑道行走,那么多少分钟后,三个人又可以相聚?分析与解答:设X分钟后,三人又可以相聚。由题意知,甲、乙相聚时,他们行走的路程差恰好是300米的整数倍,即 (120100)X=300n(n是正整数) 类似的有 (12070)X=300m(m是正整数)(10070)X=300p(p是正整数) 解得,X=15n;,X=6m;,X=

17、10p;要想三人再次相聚,X必是15、6、10的公倍数,取他们的最小公倍数 15、10、6=30即,30分钟后三人再次相聚。铺垫小红在400米长的环行跑道上跑了一圈,已知她前一半时间每秒跑4米,后一半时间每秒跑6米,那么小红跑一圈需要多长时间?分析与解答:小红跑一圈所用时间的一半是400(4+6)=40(秒),所以小红跑一圈需要402=80(秒)。例7小明在360米长的环行跑道上跑了一圈,已知他前一半时间每秒跑5米,后一半时间每秒跑4米,那么小明后一半路程用了多长时间?分析与解答:小明前一半时间:360(5+4)=40(秒),小明前一半时间跑的路程:540=200(米), 小明后一半时间跑的路

18、程:440=160(米)。所以小明后一半路程的180米(3602=180)中,前20米(180-160=20)的速度是5米/秒,剩余的160米路程的速度是4米/秒。故小明后一半路程用的时间为205+1604=4+40=44(秒)。随堂练习7一条环行跑道长30千米,一辆汽车沿着该跑道跑了一圈。已知该汽车前一半时间每分钟跑2千米;后一半时间每分钟跑1千米,那么该汽车前一半路程用了多少分钟?分析与解答:该汽车前一半时间30(2+1)=10(分钟),该汽车前一半时间跑的路程210=20(千米),该汽车后一半时间跑的路程110=10(千米),所以,该汽车前一半路程15千米(302=15)所用的速度都是2

19、千米/分。故,该汽车前一半路程用的时间为152=7.5(分)。拓展绕湖一周30千米,小绕湖走了一周,已知他前一半的时间的速度是4千米/小时,后一半的时间的速度是6千米/小时,那么小前一半路程用多少时间?分析与解答:具体分析见例题。3.5小时。铺垫在周长为200米的圆形跑道上一条直径的两端,甲、乙两人分别以6米/秒、5米/秒的速度同时同向出发,沿跑道行进。问:6分钟,甲能否追上乙两次?分析与解答:甲第一次追乙时相距:2002=100(米)。故,甲第一次追上乙用的时间:100(6-5)=100(秒);甲第二次追乙时相距:200米。故,甲第二次追上乙用的时间:200(6-5)=200(秒)。200+

20、100=300秒=5分钟6分钟。所以,6分钟,甲能追上乙两次。例8在周长为200米的圆形跑道一条直径的两端,甲、乙两人分别以6米/秒,5米/秒的速度同时同向出发,沿跑道行驶。问:16分钟,甲追上乙多少次?分析与解答:由“铺垫”知,甲第1次追上乙所用的时间是100秒。甲第二次追上乙所用的时间200(6-5)=200秒,且以后每隔200秒追上一次。又,16分钟=960秒,除去甲第1次追上乙用去100秒,剩余的时间甲又追上乙4次(960-100)200=860200=460。故,16分钟,甲追上乙5次。随堂练习8在周长400米的圆形跑道一条直径的两端,明与王军分别以4米/秒,5米/秒的速度同时同向出发前行。问20分钟,两人相遇多少次?分析与解答:第1次相遇用的时间:4002(5-4)=200秒;第2次相遇用的时间:400(5-4)=400秒,且以后每隔400秒相遇一次。又,20分钟=1200秒,(1200-200)400=2200秒。故,20分钟两人相遇了2+1=3次。拓展在400米环行跑道上,A、B两点相距100米。甲、乙两人分别从A、B两点同时出发,按逆时针方向跑步。甲每秒跑5米,乙每秒跑4米。问30分钟,甲追上乙多少次?分析与解答:甲第一次追上乙用的时间:100(5-4)=10

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论