2020年中考数学一轮复习强化训练专题12 二次函数和平行四边形4 讲义_第1页
2020年中考数学一轮复习强化训练专题12 二次函数和平行四边形4 讲义_第2页
2020年中考数学一轮复习强化训练专题12 二次函数和平行四边形4 讲义_第3页
2020年中考数学一轮复习强化训练专题12 二次函数和平行四边形4 讲义_第4页
2020年中考数学一轮复习强化训练专题12 二次函数和平行四边形4 讲义_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2020中考数学一轮复习强化训练专题12二次函数与平行四边形4学员姓名:年级:初三课时数:3课时学科教师:辅导科目:数学授课时间段:课题教学目的二次函数与平行四边形1.熟悉二次函数的基本性质2.熟悉二次函数与平行四边形的考点3.熟悉平行四边形、菱形、矩形的性质教学内容新课讲解【例1二次函数与菱形】x3的图像与y轴交于点A,点M在正比例函数yx的图已知平面直角坐标系xOy(如图1),一次函数y3342像上,且MOMA二次函数yx2bxc的图像经过点A、M(1)求线段AM的长;(2)求这个二次函数的解析式;(3)如果点B在y轴上,且位于点A下方,点C在上述二次函数的图像上,点D在一次函数y四边形A

2、BCD是菱形,求点C的坐标34x3的图像上,且图1【例2二次函数与矩形】将抛物线c1:y3x23沿x轴翻折,得到抛物线c2,如图1所示(1)请直接写出抛物线c2的表达式;(2)现将抛物线c1向左平移m个单位长度,平移后得到新抛物线的顶点为M,与x轴的交点从左到右依次为A、B;将抛物线c2向右也平移m个单位长度,平移后得到新抛物线的顶点为N,与x轴的交点从左到右依次为D、E当B、D是线段AE的三等分点时,求m的值;在平移过程中,是否存在以点A、N、E、M为顶点的四边形是矩形的情形?若存在,请求出此时m的值;若不存在,请说明理由图1【例3二次函数与平行四边形】如图1,在平面直角坐标系中,已知抛物线

3、经过A(4,0)、B(0,4)、C(2,0)三点(1)求抛物线的解析式;(2)若点M为第三象限内抛物线上一动点,点M的横坐标为eqoac(,m),MAB的面积为S,求S关于m的函数关系式,并求出S的最大值;(3)若点P是抛物线上的动点,点Q是直线yx上的动点,判断有几个位置能使以点P、Q、B、O为顶点的四边形为平行四边形,直接写出相应的点Q的坐标图1图2【例4二次函数与平行四边形】如图1,抛物线yx22x3与x轴相交于A、B两点(点A在点B的左侧),与y轴相交于点C,顶点为D(1)直接写出A、B、C三点的坐标和抛物线的对称轴;(2)连结BC,与抛物线的对称轴交于点E,点P为线段BC上的一个动点

4、,过点P作PF/DE交抛物线于点F,设点P的横坐标为m用含m的代数式表示线段PF的长,并求出当m为何值时,四边形PEDF为平行四边形?设BCF的面积为S,求S与m的函数关系图1限时检测1.已知抛物线yx2bxc经过点A(-3,0)和B(0,3)两点,将这条抛物线的顶点记为M,它的对称轴与x轴的交点记为N(1)求抛物线C的表达式(2)求点N的坐标(3)将抛物线C平移到抛物线C,抛物线C的顶点记为M、它的对称轴与x轴的交点记为N.如果以顶点M,N,M,N为顶点的四边形是面积为16的平行四边,那么应将抛物线C怎样平移?为什么?2.如图,矩形OABC的顶点A(2,0)、C(0,2)将矩形OABC绕点O

5、逆时针旋转30得矩形OEFG,线段GE、FO相交于点H,平行于y轴的直线MN分别交线段GF、GH、GO和x轴于点M、P、N、D,连结MH(1)若抛物线l:y=ax2+bx+c经过G、O、E三点,则它的解析式为:;(2)如果四边形OHMN为平行四边形,求点D的坐标;3.如图,抛物线y=x2+bx+c与x轴交于A(5,0)、B(1,0)两点,过点A作直线ACx轴,交直线y=2x于点C;(1)求该抛物线的解析式;(2)求点A关于直线y=2x的对称点A的坐标,判定点A是否在抛物线上,并说明理由;(3)点P是抛物线上一动点,过点P作y轴的平行线,交线段CA于点M,是否存在这样的点P,使四边形PACM是平

6、行四边形?若存在,求出点P的坐标;若不存在,请说明理由4.如图,在平面直角坐标系中,抛物线y=x2+mx+n经过点A(3,0)、B(0,3),点P是直线AB上的动点,过点P作x轴的垂线交抛物线于点M,设点P的横坐标为t(1)分别求出直线AB和这条抛物线的解析式(2)若点P在第四象限,连接AM、BM,当线段PM最长时,求ABM的面积(3)是否存在这样的点P,使得以点P、M、B、O为顶点的四边形为平行四边形?若存在,请直接写出点P的横坐标;若不存在,请说明理由课后作业1.如图,抛物线y=x22x+c的顶点A在直线l:y=x5上(1)求抛物线顶点A的坐标;(2)设抛物线与y轴交于点B,与x轴交于点C

7、、D(C点在D点的左侧),试判断ABD的形状;(3)在直线l上是否存在一点P,使以点P、A、B、D为顶点的四边形是平行四边形?若存在,求点P的坐标;若不存在,请说明理由2.如图,在平面直角坐标系中放置一直角三角板,其顶点为A(0,1),B(2,0),O(0,0),将此三角板绕原点O逆时针旋转90,得到eqoac(,A)BO(1)一抛物线经过点A、B、B,求该抛物线的解析式;(2)设点P是在第一象限内抛物线上的一动点,是否存在点P,使四边形PBAB的面积是eqoac(,A)BO面积4倍?若存在,请求出P的坐标;若不存在,请说明理由(3)在(2)的条件下,试指出四边形PBAB是哪种形状的四边形?并

8、写出四边形PBAB的两条性质3如图所示,在平面直角坐标系中,抛物线的顶点P到x轴的距离是4,抛物线与x轴相交于O,M两点,OM=4,矩形ABCD的边BC在线段OM上,点A,D在抛物线上(1)写出P,M两点的坐标,并求出抛物线的函数表达式;(2)设矩形ABCD的周长为L,求L的最大值;(3)当矩形ABCD的周长最大时,在抛物线的对称轴上是否存在点eqoac(,E),使得DME的周长最小?如果存在,请写出E点坐标及DME的周长最小值;如果不存在,请简要说明你的理由yPADOBCMx4.如图,对称轴为直线x72的抛物线经过点A(6,0)和B(0,4)(1)求抛物线解析式及顶点坐标;(2)设点E(x,y)是抛物线上一动点,且位于第四象限,四边形OEAF是以OA为对角线的平行四边形求平行四边形OEAF的面积S与x之间的函数关系式,并写出自变量x的取值范围;当平行四边形OEAF的面积为24时,请判断平行四边形OEAF是否为菱形?是否存在点E,使平行四边形OEAF为正方形?若存在,求出点E的坐标;若不

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论