平面向量的应用ppt-沪教版PPT课件_第1页
平面向量的应用ppt-沪教版PPT课件_第2页
平面向量的应用ppt-沪教版PPT课件_第3页
平面向量的应用ppt-沪教版PPT课件_第4页
平面向量的应用ppt-沪教版PPT课件_第5页
已阅读5页,还剩50页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、平面向量的应用回归课本1.向量应用的常用结论(1)两个向量垂直的充要条件符号表示:abab=0.坐标表示:设a=(x1,y1),b=(x2,y2),则abx1x2+y1y2=0. (2)两个向量平行的充要条件符号表示:若ab,b0,则a=b.坐标表示:设a=(x1,y1),b=(x2,y2),则ab(x1,y1)=(x2,y2),即 或x1y2-x2y1=0.(3)夹角公式cos= (0180).(4)模长公式|a|= (a=(x,y).(5)数量积性质|ab|a|b|.2.向量应用的分类概述(1)应用平面向量解决函数与不等式的问题,是以函数和不等式为背景的一种向量描述,它需要掌握向量的概念及

2、基本运算,并能根据题设条件构造合适的向量,利用向量的“数”“形”两重性解决问题. (2)平面向量与三角函数的整合,仍然是以三角题型为背景的一种向量描述,它需要根据向量的运算性质将向量问题转化为三角函数的相关知识来解答,三角知识是考查的主体.(3)平面向量在解析几何中的应用,是以解析几何中的坐标为背景的一种向量描述,它主要强调向量的坐标运算,将向量问题转化为坐标问题,进而利用直线和圆锥曲线的位置关系的相关知识来解答,坐标的运算是考查的主体. (4)平面向量在平面几何中的应用,是以平面几何中的基本图形(三角形平行四边形菱形等)为背景,重点考查平面向量的几何运算(三角形法则平行四边形法则)和几何图形

3、的基本性质.(5)平面向量在物理力学等实际问题中的应用,是以实际问题为背景,考查学科知识的综合及向量的方法.注意:(1)在解决三角形形状问题时,回答要全面准确,处理四边形问题时,要根据平行四边形或矩形菱形正方形及梯形的性质处理.(2)用向量处理物理问题时,一般情况下应画出几何图形,结合向量运算与物理实际进行解决.考点陪练答案:B答案:D答案:A4.已知等差数列an的前n项和为Sn,若 a2 +a2009 ,且ABC三点共线(该直线不过点O),则S2010等于( )A.1005B.1010C.2010D.2015解析:由题意知ABC三点共线,则a2+a2009=1.S2010= =10051=1

4、005.故选A.答案:A类型一利用向量解决平面几何问题解题准备:一般情况下,用向量解决平面几何问题,要用不共线的向量表示题目所涉及的所有向量,再通过向量的运算法则和性质解决问题.用向量方法解决平面几何问题的“三步曲”:建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题;通过运算,研究几何元素之间的关系,如距离、夹角等问题;把运算结果“翻译”成几何关系.【典例1】如图,正方形OABC两边ABBC的中点分别为D和E,求DOE的余弦值.分析把DOE转化为向量夹角.解法二:如图建立直角坐标系,设A(2,0),C(0,2),则D(2,1),E(1,2). 反思感悟利用

5、向量解几何题,关键是将有关线段设为向量,不同的设法可出现不同的解法;或者建立平面直角坐标系,用坐标法解之.利用向量解平面几何有时特别方便,但要注意一点,不宜搞得过难,因为高考在这方面要求不高.类型二向量在解析几何的应用解题准备:向量与解析几何结合的综合题是高考命题的热点,解题的关键是正确把握向量与坐标之间的转化和条件的运用.常见技巧有两个:一是以向量的运算为切入口;二是结合向量的几何意义及曲线的有关定义作转化.【典例2】在平面直角坐标系xOy中,点P到两点 的距离之和等于4,设点P的轨迹为C,直线y=kx+1与C交于A,B两点.(1)写出C的方程;(2)若 求k的值;(3)若点A在第一象限,证

6、明:当k0时,恒有 分析(1)由点P满足的条件列出等式,化简可得C的方程;(2)由 这是解题的突破口;(3)证明的关键是写出 再结合题的条件即可求证. 解(1)设P(x,y),由椭圆定义可知,点P的轨迹C是以 为焦点,长半轴为2的椭圆.它的短半轴故曲线C的方程为x2+类型三向量在物理中的应用解题准备:用向量知识研究物理问题的基本思想和方法是:(1)认真分析物理现象,深刻把握物理量之间的相互关系;(2)通过抽象概括,把物理现象转化为与之相关的向量问题;(3)利用向量知识解决这个向量问题,并获得这个向量的解;(4)利用这个结果,对原物理现象作出合理解释.即用向量知识圆满解决物理问题.【典例3】一条

7、河的两岸平行,河宽为d km,一艘船从A处出发航行到对岸,已知船航行的速度为|v1| km/h,水流速度为|v2| km/h.要使船抵达B的上游C处且BC=d km,若取|v1|=10,|v2|=4,d=2,则用时多少? 解作出位移平行四边形AGCF,如图所示,则CF=AG=|tv2|,在RtABF中,d2+(d+t|v2|)2=t2|v1|2,即(|v1|2-|v2|2)t2-2d|v2|t-2d2=0,把d=2,|v1|=10,|v2|=4代入上式,得84t2-16t-8=0,解得t0.418(h).类型四向量在三角形中的应用解题准备:平面向量与解三角形的综合题是高考中的一个热点.其解题的

8、基本思路是:(1)在这些问题中,平面向量实际上主要呈现为叙述问题的一种语言或者工具,其考查要求并不高,解题时要综合利用平面向量的几何意义等将题中的条件翻译成简单的数学问题.(2)在解题时,既要考虑三角形中的边角关系性质的应用;又要考虑向量的工具性作用,如利用向量的模与数量积转化边长与夹角问题;还要注意三角形中边角的向量关系式的表示形式. 反思感悟三角形的三边可与三个向量对应,这样就可以利用向量的知识来解三角形了,解决此类问题要注意内角与向量的夹角之间的联系与区别,还要注意向量的数量积与三角形面积公式之间关系的应用.类型五向量在函数不等式中的应用解题准备:借助向量的坐标表示,将已知条件实数化并转

9、化为函数问题,利用函数的性质解之.向量主要是通过模与不等式联系起来,常用的工具有均值不等式及|ab|a|b|.【典例5】设0|a|2且函数f(x)=cos2x-|a|sinx-|b|的最大值为0,最小值为-4,且a与b的夹角为45,求|a+b|.分析由于已知=45,故可求出|a|、|b|后再求|a+b|. 反思感悟由于已知f(x)的最值,故可结合二次函数的最值确定|a|与|b|的大小,再结合=45,可求出|a+b|.本题充分体现了函数与不等式思想在向量中的应用.错源一错误地认为|ab|=|a|b|【典例1】已知向量a,b,试比较|ab|与|a|b|的大小.错解|ab|=|a|b|.剖析设向量a

10、与b的夹角为.则ab=|a|b|cos.(1)当ab时,=90,ab=0,所以|ab|=0,但|a|b|0,故有|ab|a|b|; (2)当a与b同向或反向时,cos0=1,cos180=-1,有|ab|=|a|b|;(3)当夹角为锐角或钝角时,|ab|=|a|b|cos|,|cos|1,故有|ab|a|b|.正解综合上述可知,|ab|a|b|.错源二“共线”运用出错【典例2】如图,半圆的直径AB=2,O为圆心,C是半圆上不同于A,B的任意一点,若P为半径C上的动点,则 的最小值是_. 剖析本题的错误在于忽视向量的方向,导致了计算上的失误.向量 虽然共线,但其方向相反,所以向量运算时,一定要看

11、清方向.技法一整体思想 解题切入点解答本题的关键是要结合图形,利用向量的三角形法则找出向量之间的关系;或建立适当的坐标系,利用向量的坐标形式来解答. 解以直角顶点A为坐标原点,两直角边所在直线为坐标轴建立平面直角坐标系,设B(b,0),C(0,c),所以b2+c2=a2,设P点坐标为(x,y),则Q点坐标为(-x,-y),且x2+y2=a2,技法二转化与化归【典例2】如图所示,若点D是ABC内一点,并且满足AB2+CD2=AC2+BD2,求证:ADBC.解题切入点借助向量的减法,分别表示出向量,然后代入已知条件证明.演讲完毕,谢谢观看!Thank you for reading! In ord

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论