版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、SAS变量聚类过程13个上市公司的财务状况指标Num:股票代码X1-流动比率X1-速动比率X1-总资产周转率X1-存货周转率X1-营运资本X1-每股收益X1-净利润增长率X1-每股收益增长率X1-主营业务毛利率X1-主营业务利润率X1-成本费用利润率X1-净资产收益率X1-总资产利润率一、变量聚类过程代码Proc varclus data=a maxclusters=3Var x1-x13;Run;二、输出结果Observations48 Proportion0Variables13 Maxeigen1Cluster Variation ProportionSecondClusterMembe
2、rsVariation ExplainedExplainedEigenvalue113136.6438310.51112.3926Total variation explained = 6.643831 Proportion = 0.5111Cluster 1 will be split because it has the largest second eigenvalue, 2.392611, which is greater than the MAXEIGEN=1 value.Clustering algorithm converged.ClusterMembersCluster Sum
3、mary for 2 ClustersClusterVariationVariationExplainedProportionExplainedSecondEigenvalue110106.19720.61971.48382332.675480.89180.2719Total variation explained = 8.872681 Proportion = 0.6825R-squared withClustersOwn Next 1-R*2 VariableClusterVariableClusterClosestRatio LabelCluster 1X30.38760.00460.6
4、152X3X40.34740.00030.6527X4X60.88430.08790.1269X6X70.47350.05160.5551X7X80.47040.05440.5601X8X90.28170.03290.7428X9X100.65310.08290.3782X10X110.79580.13470.2360X11X120.97070.10290.0327X12X130.93270.12010.0765X13Cluster 2X10.83480.02100.1688X1X20.96360.14440.0425X2X50.87710.13040.1414X5Oblique Princi
5、pal Component Cluster AnalysisStandardized Scoring CoefficientsCluster12X1X10.0000000.341495X2X20.0000000.366908X3X30.1004650.000000X4X40.0951130.000000X5X50.0000000.350036X6X60.1517400.000000X7X70.1110390.000000X8X80.1106750.000000X9X90.0856390.000000X10X100.1304070.000000X11X110.1439490.000000X12X
6、120.1589780.000000X13X130.1558350.000000Cluster StructureCluster12X1X10.1448290.913662X2X20.3799400.981654X3X30.6226030.067735X4X40.5894330.015849X5X50.3610710.936513X6X60.9403610.296508X7X70.6881330.227193X8X80.6858720.233311X9X90.5307240.181441X10X100.8081590.287862X11X110.8920830.367010X12X120.98
7、52170.320739X13X130.9657400.346498Inter-Cluster Correlations1.000000.315250.315251.00000Cluster 1 will be split because it has the largest second eigenvalue, 1.483798, which is greater than the MAXEIGEN=1 value.Clustering algorithm converged.Oblique Principal Component Cluster AnalysisCluster Summar
8、y for 3 ClustersClusterMembersClusterVariationVariationExplainedProportionExplainedSecondEigenvalue1664.8430740.80720.66142332.675480.89180.27193442.5054570.62641.1988Total variation explained = 10.02401 Proportion = 0.7711R-squared withClustersOwn Next 1-R*2 VariableCluster Variable Cluster Closest
9、 Ratio LabelCluster 1X60.85710.51770.2963X6X90.43410.03290.5852X9X100.79190.17520.2523X10X110.87450.32740.1866X11X120.94630.56810.1242X12X130.93910.49420.1203X13Cluster 2X10.83480.03280.1708X1X20.96360.16190.0434X2X50.87710.13660.1424X5Cluster 3X30.53600.23930.6100X3X40.51420.20670.6124X4X70.72180.2
10、8730.3903X7X80.73350.28140.3709X8Standardized Scoring CoefficientsCluster123,X1X10.0000000.3414950.000000X2X20.0000000.3669080.000000X3X30.0000000.0000000.292209X4X40.0000000.0000000.286199X5X50.0000000.3500360.000000X6X60.1911580.0000000.000000X7X70.0000000.0000000.339099X8X80.0000000.0000000.34182
11、5X9X90.1360420.0000000.000000X10X100.1837470.0000000.000000X11X110.1930900.0000000.000000X12X120.2008640.0000000.000000X13X130.2000970.0000000.000000Oblique Principal Component Cluster AnalysisCluster StructureCluster123X1X10.1811800.9136620.027008X2X20.4024160.9816540.232536X3X30.4892140.0677350.73
12、2118X4X40.4545920.0158490.717059X5X50.3695620.9365130.247344X6X60.9257910.2965080.719533X7X70.5359750.2271930.849599X8X80.5304280.2333110.856428X9X90.6588620.1814410.140588X10X100.8898990.2878620.418592X11X110.9351490.3670100.572153X12X120.9727990.3207390.753720X13X130.9690840.3464980.702967Inter-Cl
13、uster CorrelationsCluster12311.000000.338880.6361220.338881.000000.1811230.636120.181121.00000Cluster 3 will be split because it has the largest second eigenvalue, 1.198797, which is greater than the MAXEIGEN=1 value.Clustering algorithm converged.Cluster Summary for 4 ClustersClusterMembersClusterV
14、ariationVariationExplainedProportionExplainedSecondEigenvalue-1664.843074-0.80720.66142332.675480.89180.27193221.9575620.97880.04244221.7463230.87320.2537Total variation explained = 11.22244 Proportion = 0.8633Oblique Principal Component Cluster AnalysisR-squared withClustersOwn Next 1-R*2 VariableC
15、luster Variable Cluster Closest Ratio LabelCluster 1X60.85710.36170.2239X6X90.43410.04500.5926X9X100.79190.13050.2393X10X110.87450.25390.1682X11X120.94630.40380.0900X12X130.93910.36060.0952X13Cluster 2X10.83480.03280.1708X1X20.96360.16190.0434X2X50.87710.13660.1424X5Cluster 3X70.97880.28730.0298X7X8
16、0.97880.28140.0295X8Cluster 4X30.87320.23930.1667X3X40.87320.20670.1599X4Standardized Scoring CoefficientsCluster1234X1X10.0000000.341495-0.0000000.000000X2X20.0000000.3669080.0000000.000000X3X30.0000000.0000000.0000000.535085X4X40.0000000.0000000.0000000.535085X5X50.0000000.3500360.0000000.000000X6
17、X60.1911580.0000000.0000000.000000X7X70.0000000.0000000.5053910.000000X8X80.0000000.0000000.5053910.000000X9X90.1360420.0000000.0000000.000000X10X100.1837470.0000000.0000000.000000X11X110.1930900.0000000.0000000.000000X12X120.2008640.0000000.0000000.000000X13X130.2000970.0000000.0000000.000000Obliqu
18、e Principal Component Cluster AnalysisCluster StructureCluster1234X1X10.1811800.9136620.133759-.117476X2X20.4024160.9816540.2649180.099914X3X30.4892140.0677350.3359220.934431X4X40.4545920.0158490.3158260.934431X5X50.3695620.9365130.2567050.137651X6X60.9257910.2965080.5853060.601407X7X70.5359750.2271930.9893340.338802X8X80.5304280.2333110.9893340.351240X9X90.6588620.1814410.212141-.004224X10X100.8898990.2878620.3314660.361294X11X110.9351490.3670100.5038370.430502X12X120.9727990.3207390.6354660.602190X13X130.969084
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度班组安全生产与应急管理合同3篇
- 2025年度公司管理人员知识产权保护聘用合同3篇
- 二零二五年度农村房屋买卖合同协议书(含农业科技示范)
- 2025年度公司车辆维修配件供应及质量保证协议3篇
- 2025年度关于智能制造领域方协议解约的合规性指导与合同3篇
- 二零二五年度农村养牛基地建设项目合同2篇
- 2025年度公厕保洁服务与社区绿化合作合同3篇
- 二零二五年度商业地产经营权承包管理合同2篇
- 二零二五年度婚姻财产权益保障及变更协议3篇
- 2025年度智能设备试用体验服务全新试用协议3篇
- 2024年演出经纪人资格《思想政治与法律基础》考前必刷必练题库500题(含真题、必会题)
- 苗圃购销合同范本
- 《二十四节气融入幼儿园教育活动的个案研究》
- 麻醉与舒适医疗
- GB/T 44899-2024商品条码散装和大宗商品编码与条码表示
- 高考英语一轮复习知识清单(全国版)专题06 语法填空倒装句100题(精练) 含答案及解析
- 侵入性器械(操作)相关感染防控制度的落实
- 土方开挖及周边环境保护方案
- 2024年安徽省公务员录用考试《行测》试题及答案解析
- 2024年度危废培训完整课件
- 福建师范大学《教育学(含教师职业道德)》2023-2024学年第一学期期末试卷
评论
0/150
提交评论