2022年河南省新乡市高考适应性考试数学试卷含解析_第1页
2022年河南省新乡市高考适应性考试数学试卷含解析_第2页
2022年河南省新乡市高考适应性考试数学试卷含解析_第3页
2022年河南省新乡市高考适应性考试数学试卷含解析_第4页
2022年河南省新乡市高考适应性考试数学试卷含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1复数满足,则复数等于()ABC2D-22公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”,利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值,这就是著名的“徽率

2、”。如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出的值为( )(参考数据: )A48B36C24D123已知x,y满足不等式,且目标函数z9x+6y最大值的变化范围20,22,则t的取值范围( )A2,4B4,6C5,8D6,74是边长为的等边三角形,、分别为、的中点,沿把折起,使点翻折到点的位置,连接、,当四棱锥的外接球的表面积最小时,四棱锥的体积为( )ABCD5已知函数在上有两个零点,则的取值范围是( )ABCD6为研究某咖啡店每日的热咖啡销售量和气温之间是否具有线性相关关系,统计该店2017年每周六的销售量及当天气温得到如图所示的散点图(轴表示气温,轴表示销售量),由散点图可

3、知与的相关关系为( )A正相关,相关系数的值为B负相关,相关系数的值为C负相关,相关系数的值为D正相关,相关负数的值为72019年10月1日,中华人民共和国成立70周年,举国同庆.将2,0,1,9,10这5个数字按照任意次序排成一行,拼成一个6位数,则产生的不同的6位数的个数为A96B84C120D3608执行如图所示的程序框图,当输出的时,则输入的的值为( )A-2B-1CD9阅读如图的程序框图,运行相应的程序,则输出的的值为( )ABCD10已知三棱锥中,为的中点,平面,则有下列四个结论:若为的外心,则;若为等边三角形,则;当时,与平面所成的角的范围为;当时,为平面内一动点,若OM平面,则

4、在内轨迹的长度为1其中正确的个数是( )A1B1C3D411抛物线C:y2=2px的焦点F是双曲线C2:x2m-y21-m=10m1的右焦点,点P是曲线C1,C2的交点,点Q在抛物线的准线上,FPQ是以点P为直角顶点的等腰直角三角形,则双曲线C2的离心率为( )A2+1B22+3C210-3D210+312已知三棱锥的所有顶点都在球的球面上,平面,若球的表面积为,则三棱锥的体积的最大值为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13在四棱锥中,底面为正方形,面分别是棱的中点,过的平面交棱于点,则四边形面积为_.14已知中,点是边的中点,的面积为,则线段的取值范围是_.15已

5、知,若的展开式中的系数比x的系数大30,则_16已知正四棱柱的底面边长为,侧面的对角线长是,则这个正四棱柱的体积是_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)设函数(1)当时,解不等式;(2)设,且当时,不等式有解,求实数的取值范围18(12分)已知函数 , (1)求函数的单调区间;(2)当时,判断函数,()有几个零点,并证明你的结论;(3)设函数,若函数在为增函数,求实数的取值范围19(12分)已知函数.(1)讨论函数的极值;(2)记关于的方程的两根分别为,求证:.20(12分)在直角坐标系中,直线的参数方程为为参数),直线的参数方程(为参数),若直线的交点

6、为,当变化时,点的轨迹是曲线(1)求曲线的普通方程;(2)以坐标原点为极点,轴非负半轴为极轴且取相同的单位长度建立极坐标系,设射线的极坐标方程为,点为射线与曲线的交点,求点的极径.21(12分)设函数.(1)若,求实数的取值范围;(2)证明:,恒成立.22(10分)为了解甲、乙两个快递公司的工作状况,假设同一个公司快递员的工作状况基本相同,现从甲、乙两公司各随机抽取一名快递员,并从两人某月(30天)的快递件数记录结果中随机抽取10天的数据,整理如下:甲公司员工:410,390,330,360,320,400,330,340,370,350乙公司员工:360,420,370,360,420,34

7、0,440,370,360,420每名快递员完成一件货物投递可获得的劳务费情况如下:甲公司规定每件0.65元,乙公司规定每天350件以内(含350件)的部分每件0.6元,超出350件的部分每件0.9元.(1)根据题中数据写出甲公司员工在这10天投递的快件个数的平均数和众数;(2)为了解乙公司员工每天所得劳务费的情况,从这10天中随机抽取1天,他所得的劳务费记为 (单位:元),求的分布列和数学期望;(3)根据题中数据估算两公司被抽取员工在该月所得的劳务费.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1B【解析】通过复数的模以及复数

8、的代数形式混合运算,化简求解即可.【详解】复数满足,故选B.【点睛】本题主要考查复数的基本运算,复数模长的概念,属于基础题2C【解析】由开始,按照框图,依次求出s,进行判断。【详解】 ,故选C.【点睛】框图问题,依据框图结构,依次准确求出数值,进行判断,是解题关键。3B【解析】作出可行域,对t进行分类讨论分析目标函数的最大值,即可求解.【详解】画出不等式组所表示的可行域如图AOB当t2时,可行域即为如图中的OAM,此时目标函数z9x+6y 在A(2,0)取得最大值Z18不符合题意t2时可知目标函数Z9x+6y在的交点()处取得最大值,此时Zt+16由题意可得,20t+1622解可得4t6故选:

9、B【点睛】此题考查线性规划,根据可行域结合目标函数的最大值的取值范围求参数的取值范围,涉及分类讨论思想,关键在于熟练掌握截距型目标函数的最大值最优解的处理办法.4D【解析】首先由题意得,当梯形的外接圆圆心为四棱锥的外接球球心时,外接球的半径最小,通过图形发现,的中点即为梯形的外接圆圆心,也即四棱锥的外接球球心,则可得到,进而可根据四棱锥的体积公式求出体积.【详解】如图,四边形为等腰梯形,则其必有外接圆,设为梯形的外接圆圆心,当也为四棱锥的外接球球心时,外接球的半径最小,也就使得外接球的表面积最小,过作的垂线交于点,交于点,连接,点必在上,、分别为、的中点,则必有,即为直角三角形.对于等腰梯形,

10、如图:因为是等边三角形,、分别为、的中点,必有,所以点为等腰梯形的外接圆圆心,即点与点重合,如图,所以四棱锥底面的高为,.故选:D.【点睛】本题考查四棱锥的外接球及体积问题,关键是要找到外接球球心的位置,这个是一个难点,考查了学生空间想象能力和分析能力,是一道难度较大的题目.5C【解析】对函数求导,对a分类讨论,分别求得函数的单调性及极值,结合端点处的函数值进行判断求解.【详解】 ,.当时,在上单调递增,不合题意.当时,在上单调递减,也不合题意.当时,则时,在上单调递减,时,在上单调递增,又,所以在上有两个零点,只需即可,解得.综上,的取值范围是.故选C.【点睛】本题考查了利用导数解决函数零点

11、的问题,考查了函数的单调性及极值问题,属于中档题6C【解析】根据正负相关的概念判断【详解】由散点图知随着的增大而减小,因此是负相关相关系数为负故选:C【点睛】本题考查变量的相关关系,考查正相关和负相关的区别掌握正负相关的定义是解题基础7B【解析】2,0,1,9,10按照任意次序排成一行,得所有不以0开头的排列数共个,其中含有2个10的排列数共个,所以产生的不同的6位数的个数为.故选B8B【解析】若输入,则执行循环得结束循环,输出,与题意输出的矛盾;若输入,则执行循环得结束循环,输出,符合题意;若输入,则执行循环得结束循环,输出,与题意输出的矛盾;若输入,则执行循环得结束循环,输出,与题意输出的

12、矛盾;综上选B.9C【解析】根据给定的程序框图,计算前几次的运算规律,得出运算的周期性,确定跳出循环时的n的值,进而求解的值,得到答案.【详解】由题意,第1次循环,满足判断条件;第2次循环,满足判断条件;第3次循环,满足判断条件; 可得的值满足以3项为周期的计算规律,所以当时,跳出循环,此时和时的值对应的相同,即.故选:C.【点睛】本题主要考查了循环结构的程序框图的计算与输出问题,其中解答中认真审题,得出程序运行时的计算规律是解答的关键,着重考查了推理与计算能力.10C【解析】由线面垂直的性质,结合勾股定理可判断正确; 反证法由线面垂直的判断和性质可判断错误;由线面角的定义和转化为三棱锥的体积

13、,求得C到平面PAB的距离的范围,可判断正确;由面面平行的性质定理可得线面平行,可得正确.【详解】画出图形:若为的外心,则,平面,可得,即,正确;若为等边三角形,又可得平面,即,由可得,矛盾,错误;若,设与平面所成角为可得,设到平面的距离为由可得即有,当且仅当取等号.可得的最大值为, 即的范围为,正确;取中点,的中点,连接由中位线定理可得平面平面可得在线段上,而,可得正确;所以正确的是:故选:C【点睛】此题考查立体几何中与点、线、面位置关系有关的命题的真假判断,处理这类问题,可以用已知的定理或性质来证明,也可以用反证法来说明命题的不成立.属于一般性题目.11A【解析】先由题和抛物线的性质求得点

14、P的坐标和双曲线的半焦距c的值,再利用双曲线的定义可求得a的值,即可求得离心率.【详解】由题意知,抛物线焦点F1,0,准线与x轴交点F(-1,0),双曲线半焦距c=1,设点Q(-1,y) FPQ是以点P为直角顶点的等腰直角三角形,即PF=PQ,结合P点在抛物线上,所以PQ抛物线的准线,从而PFx轴,所以P1,2,2a=PF-PF=22-2 即a=2-1.故双曲线的离心率为e=12-1=2+1.故选A【点睛】本题考查了圆锥曲线综合,分析题目,画出图像,熟悉抛物线性质以及双曲线的定义是解题的关键,属于中档题.12B【解析】由题意画出图形,设球0得半径为R,AB=x, AC=y,由球0的表面积为20

15、,可得R2=5,再求出三角形A BC外接圆的半径,利用余弦定理及基本不等式求xy的最大值,代入棱锥体积公式得答案.【详解】设球的半径为,由,得如图:设三角形的外心为,连接,可得,则在中,由正弦定理可得:,即,由余弦定理可得,则三棱锥的体积的最大值为故选:【点睛】本题考查三棱锥的外接球、三棱锥的侧面积、体积,基本不等式等基础知识,考查空间想象能力、逻辑思维能力、运算求解能力,考查数学转化思想方法与数形结合的解题思想方法,是中档题二、填空题:本题共4小题,每小题5分,共20分。13【解析】设是中点,由于分别是棱的中点,所以,所以,所以四边形是平行四边形.由于平面,所以,而,所以平面,所以.由于,所

16、以,也即,所以四边形是矩形. 而.从而.故答案为:.【点睛】本小题主要考查空间平面图形面积的计算,考查线面垂直的判定,考查空间想象能力和逻辑推理能力,属于中档题.14【解析】设,利用正弦定理,根据,得到,再利用余弦定理得,平方相加得:,转化为 有解问题求解.【详解】设,所以, 即由余弦定理得,即 ,平方相加得:,即 ,令,设 ,在上有解,所以 ,解得,即 ,故答案为:【点睛】本题主要考查正弦定理和余弦定理在平面几何中的应用,还考查了运算求解的能力,属于难题.152【解析】利用二项展开式的通项公式,二项式系数的性质,求得的值【详解】展开式通项为:且的展开式中的系数比的系数大,即:解得:(舍去)或

17、本题正确结果:【点睛】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题16【解析】Aa设正四棱柱的高为h得到故得到正四棱柱的体积为故答案为54.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1);(2).【解析】(1)通过分类讨论去掉绝对值符号,进而解不等式组求得结果;(2)将不等式整理为,根据能成立思想可知,由此构造不等式求得结果.【详解】(1)当时,可化为,由,解得;由,解得;由,解得综上所述:所以原不等式的解集为(2),有解,即,又,实数的取值范围是【点睛】本题考查绝对值不等式的求解、根据不等式有解求解参数范围的问题;关键是明确对于不

18、等式能成立的问题,通过分离变量的方式将问题转化为所求参数与函数最值之间的比较问题.18(1)单调增区间,单调减区间为,;(2)有2个零点,证明见解析;(3)【解析】对函数求导,利用导数的正负判断函数的单调区间即可;函数有2个零点.根据函数的零点存在性定理即可证明;记函数,求导后利用单调性求得,由零点存在性定理及单调性知存在唯一的,使,求得为分段函数,求导后分情况讨论:当时,利用函数的单调性将问题转化为的问题;当时,当时,在上恒成立,从而求得的取值范围.【详解】(1)由题意知,,列表如下:02 0 极小值 极大值 所以函数的单调增区间为,单调减区间为,. (2)函数有2个零点.证明如下: 因为时

19、,所以,因为,所以在恒成立,在上单调递增,由,且在上单调递增且连续知,函数在上仅有一个零点,由(1)可得时,,即,故时,所以,由得,平方得,所以,因为,所以在上恒成立,所以函数在上单调递减,因为,所以,由,且在上单调递减且连续得在上仅有一个零点,综上可知:函数有2个零点. (3)记函数,下面考察的符号求导得当时恒成立当时,因为,所以在上恒成立,故在上单调递减,又因为在上连续,所以由函数的零点存在性定理得存在唯一的,使, ,因为,所以 因为函数在上单调递增,所以在,上恒成立当时,在上恒成立,即在上恒成立记,则,当变化时,变化情况如下表: 极小值 ,故,即当时,当时,在上恒成立综合(1)(2)知,

20、 实数的取值范围是【点睛】本题考查利用导数求函数的单调区间、极值、最值和利用零点存在性定理判断函数零点个数、利用分离参数法求参数的取值范围;考查转化与化归能力、逻辑推理能力、运算求解能力;通过构造函数,利用零点存在性定理判断其零点,从而求出函数的表达式是求解本题的关键;属于综合型强、难度大型试题.19(1)见解析; (2)见解析【解析】(1)对函数求导,对参数讨论,得函数单调区间,进而求出极值;(2)是方程的两根,代入方程,化简换元,构造新函数利用函数单调性求最值可解.【详解】(1)依题意,;若,则,则函数在上单调递增,此时函数既无极大值,也无极小值;若,则,令,解得,故当时,单调递增;当时,

21、单调递减,此时函数有极大值,无极小值;若,则,令,解得,故当时,单调递增;当时,单调递减,此时函数有极大值,无极小值;(2)依题意,则,故,;要证:,即证,即证:,即证,设,只需证:,设,则,故在上单调递增,故,即,故.【点睛】本题考查函数极值及利用导数证明二元不等式.证明二元不等式常用方法是转化为证明一元不等式,再转化为函数最值问题.利用导数证明不等式的基本方法:(1)若与的最值易求出,可直接转化为证明;(2)若与的最值不易求出,可构造函数,然后根据函数 的单调性或最值,证明.20(1);(2)【解析】(1)将两直线化为普通方程,消去参数,即可求出曲线的普通方程;(2)设Q点的直角坐标系坐标为,求出,代入曲线C可求解.【详解】(1)直线的普通方程为,直线的普通方程为联立直线,方程消去参数k,得曲线C的普通方程为整理得.(2)设Q点的直角坐标系坐标为,由可得代入曲线C的方程可得,解得(舍),所以点的极径为.【点睛】本题主要考查了直线的参数方程化为普通方程

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论