




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1下列命题为真命题的个数是( )(其中,为无理数);.A0B1C2D32设,则复数的模等于( )ABCD3若sin(+32)=33,则cos2=( )A-12B-13C13D124在正
2、方体中,分别为,的中点,则异面直线,所成角的余弦值为( )ABCD5公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”,利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值,这就是著名的“徽率”。如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出的值为( )(参考数据: )A48B36C24D126双曲线:(,)的一个焦点为(),且双曲线的两条渐近线与圆:均相切,则双曲线的渐近线方程为( )ABCD7已知数列是公比为的正项等比数列,若、满足,则的最小值为( )ABCD8已知纯虚数满足,其中为虚数单位,则实数等于( )
3、AB1CD29已知f(x)=是定义在R上的奇函数,则不等式f(x-3)f(9-x2)的解集为( )A(-2,6)B(-6,2)C(-4,3)D(-3,4)10设a,b,c为正数,则“”是“”的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不修要条件11已知双曲线:,为其左、右焦点,直线过右焦点,与双曲线的右支交于,两点,且点在轴上方,若,则直线的斜率为( )ABCD12设,则“”是“”的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件二、填空题:本题共4小题,每小题5分,共20分。13已知正方形边长为,空间中的动点满足,则三棱锥体积的最大值是_.14若函数的
4、图像向左平移个单位得到函数的图像.则在区间上的最小值为_.15在平面直角坐标系中,双曲线的一条准线与两条渐近线所围成的三角形的面积为_.16已知,满足约束条件,则的最大值为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数.(1)讨论的单调性;(2)若在定义域内是增函数,且存在不相等的正实数,使得,证明:.18(12分)已知在平面直角坐标系中,椭圆的焦点为为椭圆上任意一点,且.(1)求椭圆的标准方程;(2)若直线交椭圆于两点,且满足(分别为直线的斜率),求的面积为时直线的方程.19(12分)如图为某大江的一段支流,岸线与近似满足,宽度为圆为江中的一个半径为的
5、小岛,小镇位于岸线上,且满足岸线,现计划建造一条自小镇经小岛至对岸的水上通道(图中粗线部分折线段,在右侧),为保护小岛,段设计成与圆相切设 (1)试将通道的长表示成的函数,并指出定义域;(2)若建造通道的费用是每公里100万元,则建造此通道最少需要多少万元?20(12分)已知函数()求函数的极值;()若,且,求证:21(12分)正项数列的前n项和Sn满足: (1)求数列的通项公式; (2)令,数列bn的前n项和为Tn,证明:对于任意的nN*,都有Tn .22(10分)已知椭圆()的半焦距为,原点到经过两点,的直线的距离为()求椭圆的离心率;()如图,是圆的一条直径,若椭圆经过,两点,求椭圆的方
6、程参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1C【解析】对于中,根据指数幂的运算性质和不等式的性质,可判定值正确的;对于中,构造新函数,利用导数得到函数为单调递增函数,进而得到,即可判定是错误的;对于中,构造新函数,利用导数求得函数的最大值为,进而得到,即可判定是正确的.【详解】由题意,对于中,由,可得,根据不等式的性质,可得成立,所以是正确的;对于中,设函数,则,所以函数为单调递增函数,因为,则又由,所以,即,所以不正确;对于中,设函数,则,当时,函数单调递增,当时,函数单调递减,所以当时,函数取得最大值,最大值为,所以,即
7、,即,所以是正确的.故选:C.【点睛】本题主要考查了不等式的性质,以及导数在函数中的综合应用,其中解答中根据题意,合理构造新函数,利用导数求得函数的单调性和最值是解答的关键,着重考查了构造思想,以及推理与运算能力,属于中档试题.2C【解析】利用复数的除法运算法则进行化简,再由复数模的定义求解即可.【详解】因为,所以,由复数模的定义知,.故选:C【点睛】本题考查复数的除法运算法则和复数的模;考查运算求解能力;属于基础题.3B【解析】由三角函数的诱导公式和倍角公式化简即可.【详解】因为sin+32=33,由诱导公式得cos=-33,所以cos2=2cos2-1=-13 .故选B【点睛】本题考查了三
8、角函数的诱导公式和倍角公式,灵活掌握公式是关键,属于基础题.4D【解析】连接,因为,所以为异面直线与所成的角(或补角),不妨设正方体的棱长为2,取的中点为,连接,在等腰中,求出,在利用二倍角公式,求出,即可得出答案.【详解】连接,因为,所以为异面直线与所成的角(或补角),不妨设正方体的棱长为2,则,在等腰中,取的中点为,连接,则,所以,即:,所以异面直线,所成角的余弦值为.故选:D.【点睛】本题考查空间异面直线的夹角余弦值,利用了正方体的性质和二倍角公式,还考查空间思维和计算能力.5C【解析】由开始,按照框图,依次求出s,进行判断。【详解】 ,故选C.【点睛】框图问题,依据框图结构,依次准确求
9、出数值,进行判断,是解题关键。6A【解析】根据题意得到,化简得到,得到答案.【详解】根据题意知:焦点到渐近线的距离为,故,故渐近线为.故选:.【点睛】本题考查了直线和圆的位置关系,双曲线的渐近线,意在考查学生的计算能力和转化能力.7B【解析】利用等比数列的通项公式和指数幂的运算法则、指数函数的单调性求得再根据此范围求的最小值【详解】数列是公比为的正项等比数列,、满足,由等比数列的通项公式得,即,可得,且、都是正整数,求的最小值即求在,且、都是正整数范围下求最小值和的最小值,讨论、取值.当且时,的最小值为.故选:B【点睛】本题考查等比数列的通项公式和指数幂的运算法则、指数函数性质等基础知识,考查
10、数学运算求解能力和分类讨论思想,是中等题8B【解析】先根据复数的除法表示出,然后根据是纯虚数求解出对应的的值即可.【详解】因为,所以,又因为是纯虚数,所以,所以.故选:B.【点睛】本题考查复数的除法运算以及根据复数是纯虚数求解参数值,难度较易.若复数为纯虚数,则有.9C【解析】由奇函数的性质可得,进而可知在R上为增函数,转化条件得,解一元二次不等式即可得解.【详解】因为是定义在R上的奇函数,所以,即,解得,即,易知在R上为增函数.又,所以,解得.故选:C.【点睛】本题考查了函数单调性和奇偶性的应用,考查了一元二次不等式的解法,属于中档题.10B【解析】根据不等式的性质,结合充分条件和必要条件的
11、定义进行判断即可【详解】解:,为正数,当,时,满足,但不成立,即充分性不成立,若,则,即,即,即,成立,即必要性成立,则“”是“”的必要不充分条件,故选:【点睛】本题主要考查充分条件和必要条件的判断,结合不等式的性质是解决本题的关键11D【解析】由|AF2|3|BF2|,可得.设直线l的方程xmy+,m0,设,即y13y2,联立直线l与曲线C,得y1+y2-,y1y2,求出m的值即可求出直线的斜率.【详解】双曲线C:,F1,F2为左、右焦点,则F2(,0),设直线l的方程xmy+,m0,双曲线的渐近线方程为x2y,m2,设A(x1,y1),B(x2,y2),且y10,由|AF2|3|BF2|,
12、y13y2由,得(2m)24(m24)0,即m2+40恒成立,y1+y2,y1y2,联立得,联立得,即:,解得:,直线的斜率为,故选D【点睛】本题考查直线与双曲线的位置关系,考查韦达定理的运用,考查向量知识,属于中档题12B【解析】先解不等式化简两个条件,利用集合法判断充分必要条件即可【详解】解不等式可得,解绝对值不等式可得,由于为的子集,据此可知“”是“”的必要不充分条件故选:B【点睛】本题考查了必要不充分条件的判定,考查了学生数学运算,逻辑推理能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13【解析】以为原点,为轴,为轴,过作平面的垂线为轴建立空间直角坐标系,设点,根据
13、题中条件得出,进而可求出的最大值,由此能求出三棱锥体积的最大值.【详解】以为原点,为轴,为轴,过作平面的垂线为轴建立空间直角坐标系,则,设点,空间中的动点满足,所以,整理得,当,时,取最大值,所以,三棱锥的体积为.因此,三棱锥体积的最大值为.故答案为:.【点睛】本题考查三棱锥体积的最大值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题14【解析】注意平移是针对自变量x,所以,再利用整体换元法求值域(最值)即可.【详解】由已知,又,故,所以的最小值为.故答案为:.【点睛】本题考查正弦型函数在给定区间上的最值问题,涉及到图象的平移变换、辅助角公式的应用,是一道基
14、础题.15【解析】求出双曲线的渐近线方程,求出准线方程,求出三角形的顶点的坐标,然后求解面积【详解】解:双曲线:双曲线中,则双曲线的一条准线方程为,双曲线的渐近线方程为:,可得准线方程与双曲线的两条渐近线所围成的三角形的顶点的坐标,则三角形的面积为故答案为:【点睛】本题考查双曲线方程的应用,双曲线的简单性质的应用,考查计算能力,属于中档题16【解析】根据题意,画出可行域,将目标函数看成可行域内的点与原点距离的平方,利用图象即可求解.【详解】可行域如图所示,易知当,时,的最大值为故答案为:9.【点睛】本题考查了利用几何法解决非线性规划问题,属于中档题.三、解答题:共70分。解答应写出文字说明、证
15、明过程或演算步骤。17(1)当时,在上递增,在上递减;当时,在上递增,在上递减,在上递增;当时,在上递增;当时,在上递增,在上递减,在上递增;(2)证明见解析【解析】(1)对求导,分,进行讨论,可得的单调性;(2)在定义域内是是增函数,由(1)可知,设,可得,则,设,对求导,利用其单调性可证明.【详解】解:的定义域为,因为,所以,当时,令,得,令,得;当时,则,令,得,或,令,得;当时,当时,则,令,得;综上所述,当时,在上递增,在上递减;当时,在上递增,在上递减,在上递增;当时,在上递增;当时,在上递增,在上递减,在上递增;(2)在定义域内是是增函数,由(1)可知,此时,设,又因为,则,设,
16、则对于任意成立,所以在上是增函数,所以对于,有,即,有,因为,所以,即,又在递增,所以,即.【点睛】本题主要考查利用导数研究含参函数的单调性及导数在极值点偏移中的应用,考查学生分类讨论与转化的思想,综合性大,属于难题.18(1)(2)或【解析】(1)根据椭圆定义求得,得椭圆方程;(2)设,由得,应用韦达定理得,代入已知条件可得,再由椭圆中弦长公式求得弦长,原点到直线的距离,得三角形面积,从而可求得,得直线方程【详解】解:(1)据题意设椭圆的方程为则椭圆的标准方程为.(2)据得设,则又原点到直线的距离解得或所求直线的方程为或【点睛】本题考查求椭圆标准方程,考查直线与椭圆相交问题解题时采取设而不求
17、思想,即设交点坐标为,直线方程与椭圆方程联立消元后应用韦达定理得,把这个结论代入题中条件求得参数,用它求弦长等等,从而解决问题19(1),定义域是(2)百万【解析】(1)以为原点,直线为轴建立如图所示的直角坐标系,设,利用直线与圆相切得到,再代入这一关系中,即可得答案;(2)利用导数求函数的最小值,即可得答案;【详解】以为原点,直线为轴建立如图所示的直角坐标系 设,则,因为,所以直线的方程为,即,因为圆与相切,所以,即,从而得,在直线的方程中,令,得,所以,所以当时,设锐角满足,则,所以关于的函数是,定义域是(2)要使建造此通道费用最少,只要通道的长度即最小令,得,设锐角,满足,得列表:0减极
18、小值增所以时,所以建造此通道的最少费用至少为百万元【点睛】本题考查三角函数模型的实际应用、利用导数求函数的最小值,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力.20 ()极大值为:,无极小值;()见解析.【解析】()求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可求出函数的极值;()得到,根据函数的单调性问题转化为证明,即证,令,根据函数的单调性证明即可【详解】() 的定义域为且令,得;令,得在上单调递增,在上单调递减函数的极大值为,无极小值(), ,即由()知在上单调递增,在上单调递减且,则要证,即证,即证,即证即证由于,即,即证令则 恒成立 在递增在恒成立【点睛】本题考查了函数的单调性、最值问题,考查导数的应用以及分类讨论思想,转化思想,考查不等式的证明,考查运算求解能力及化归与转化思想,关键是能够构造出合适的函数,将问题转化为函数最值的求解问题,属于难题21(1)(2)见解析【解析】(1)因为数列的前项和满足:,所以当时,即解得或,因为数列都是正项,所以,因为,所以,解得或,因为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024-2025学年全国小学一年级上数学仁爱版期中试卷(含答案解析)
- 非农就业对农民商业保险参与行为影响研究-以医疗保险和养老保险为例
- “区域”资源开发阶段担保国责任问题研究
- 青海禾本科杂草在小麦条锈菌越夏中的作用
- 历史唯物主义“两种生产”理论及其当代启示研究
- 水电站水机电网耦合系统多频暂态特性与运行控制研究
- 延边地区羊源奇异变形杆菌外膜囊泡分离鉴定及小鼠免疫效果初步评估
- 柔性电磁感应器件用于人体运动监测的应用研究
- 基于深度学习的遥感影像道路识别方法研究
- 车联网环境下复杂交通信息协同的微观建模与优化控制
- 2025年 内蒙古能源集团所属单位招聘考试笔试试题(含答案)
- 期末试卷(试题)(含答案)-2024-2025学年一年级下册数学北师大版
- 2025年江西省高考物理真题
- 2024年地理中考模拟考试地理(贵州贵阳卷)(A4考试版)
- 上海浦东新区公办学校储备教师教辅招聘笔试真题2022
- 国开(甘肃)2024年春《地域文化(专)》形考任务1-4终考答案
- 安全生产月“一把手”讲安全课件
- BS EN 10222-5-2000用于压力目的的钢锻件—第5部分:马口铁钢奥氏体钢和奥氏体-铁素体不锈钢
- Grace评分表、TIMI评分、CRUSAD评分、wells评分等
- 洗洁精-MSDS(202334)
- 东莞虎门架空线路拆除施工方案
评论
0/150
提交评论