2022届云南省峨山高三第二次模拟考试数学试卷含解析_第1页
2022届云南省峨山高三第二次模拟考试数学试卷含解析_第2页
2022届云南省峨山高三第二次模拟考试数学试卷含解析_第3页
2022届云南省峨山高三第二次模拟考试数学试卷含解析_第4页
2022届云南省峨山高三第二次模拟考试数学试卷含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1设,则“ ”是“”的( )A充分而不必要条件B必要而不充分条件C充分必要条件D既不充分也不必要条件2设集合,则集合ABCD3已知函数,则( )ABCD4已知某几何体的三视图

2、如图所示,则该几何体外接球的表面积为( )ABCD5若函数(其中,图象的一个对称中心为,其相邻一条对称轴方程为,该对称轴处所对应的函数值为,为了得到的图象,则只要将的图象( )A向右平移个单位长度B向左平移个单位长度C向左平移个单位长度D向右平移个单位长度6已知集合,集合,则等于( )ABCD7的展开式中的一次项系数为( )ABCD8若的展开式中的系数为150,则( )A20B15C10D259已知满足,则的取值范围为( )ABCD10各项都是正数的等比数列的公比,且成等差数列,则的值为()ABCD或11已知ab0,c1,则下列各式成立的是()AsinasinbBcacbCacbcD12已知等

3、边ABC内接于圆:x2+ y2=1,且P是圆上一点,则的最大值是( )AB1CD2二、填空题:本题共4小题,每小题5分,共20分。13已知函数,则曲线在处的切线斜率为_.14已知函数,则函数的极大值为 _15如果椭圆的对称轴为坐标轴,短轴的一个端点与两焦点组成一正三角形,焦点在x轴上,且=, 那么椭圆的方程是 16甲、乙、丙、丁4名大学生参加两个企业的实习,每个企业两人,则“甲、乙两人恰好在同一企业”的概率为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)在平面直角坐标系中,已知椭圆的短轴长为,直线与椭圆相交于两点,线段的中点为.当与连线的斜率为时,直线的倾斜角

4、为(1)求椭圆的标准方程;(2)若是以为直径的圆上的任意一点,求证:18(12分)已知.(1)求不等式的解集;(2)若存在,使得成立,求实数的取值范围19(12分)如图,在四棱锥中,和均为边长为的等边三角形.(1)求证:平面平面;(2)求二面角的余弦值.20(12分)已知函数,(1)当时,讨论函数的单调性;(2)若,当时,函数,求函数的最小值21(12分)在直角坐标系中,直线的参数方程是为参数),曲线的参数方程是为参数),以为极点,轴的非负半轴为极轴建立极坐标系(1)求直线和曲线的极坐标方程;(2)已知射线与曲线交于两点,射线与直线交于点,若的面积为1,求的值和弦长22(10分)已知函数,为的

5、导数,函数在处取得最小值(1)求证:;(2)若时,恒成立,求的取值范围参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1C【解析】根据充分条件和必要条件的定义结合对数的运算进行判断即可【详解】a,b(1,+),ablogab1,logab1ab,ab是logab1的充分必要条件,故选C【点睛】本题主要考查充分条件和必要条件的判断,根据不等式的解法是解决本题的关键2B【解析】先求出集合和它的补集,然后求得集合的解集,最后取它们的交集得出结果.【详解】对于集合A,解得或,故.对于集合B,解得.故.故选B.【点睛】本小题主要考查一元二次不

6、等式的解法,考查对数不等式的解法,考查集合的补集和交集的运算.对于有两个根的一元二次不等式的解法是:先将二次项系数化为正数,且不等号的另一边化为,然后通过因式分解,求得对应的一元二次方程的两个根,再利用“大于在两边,小于在中间”来求得一元二次不等式的解集.3A【解析】根据分段函数解析式,先求得的值,再求得的值.【详解】依题意,.故选:A【点睛】本小题主要考查根据分段函数解析式求函数值,属于基础题.4C【解析】由三视图可知,几何体是一个三棱柱,三棱柱的底面是底边为,高为的等腰三角形,侧棱长为,利用正弦定理求出底面三角形外接圆的半径,根据三棱柱的两底面中心连线的中点就是三棱柱的外接球的球心,求出球

7、的半径,即可求解球的表面积.【详解】由三视图可知,几何体是一个三棱柱,三棱柱的底面是底边为,高为的等腰三角形,侧棱长为,如图:由底面边长可知,底面三角形的顶角为,由正弦定理可得,解得, 三棱柱的两底面中心连线的中点就是三棱柱的外接球的球心,所以,该几何体外接球的表面积为:.故选:C【点睛】本题考查了多面体的内切球与外接球问题,由三视图求几何体的表面积,考查了学生的空间想象能力,属于基础题.5B【解析】由函数的图象的顶点坐标求出A,由周期求出,由五点法作图求出的值,可得的解析式,再根据函数的图象变换规律,诱导公式,得出结论【详解】根据已知函数其中,的图象过点,可得,解得:再根据五点法作图可得,可

8、得:,可得函数解析式为:故把的图象向左平移个单位长度,可得的图象,故选B【点睛】本题主要考查由函数的部分图象求解析式,由函数的图象的顶点坐标求出A,由周期求出,由五点法作图求出的值,函数的图象变换规律,诱导公式的应用,属于中档题6B【解析】求出中不等式的解集确定出集合,之后求得.【详解】由,所以,故选:B.【点睛】该题考查的是有关集合的运算的问题,涉及到的知识点有一元二次不等式的解法,集合的运算,属于基础题目.7B【解析】根据多项式乘法法则得出的一次项系数,然后由等差数列的前项和公式和组合数公式得出结论【详解】由题意展开式中的一次项系数为故选:B【点睛】本题考查二项式定理的应用,应用多项式乘法

9、法则可得展开式中某项系数同时本题考查了组合数公式8C【解析】通过二项式展开式的通项分析得到,即得解.【详解】由已知得,故当时,于是有,则.故选:C【点睛】本题主要考查二项式展开式的通项和系数问题,意在考查学生对这些知识的理解掌握水平.9C【解析】设,则的几何意义为点到点的斜率,利用数形结合即可得到结论.【详解】解:设,则的几何意义为点到点的斜率,作出不等式组对应的平面区域如图:由图可知当过点的直线平行于轴时,此时成立;取所有负值都成立;当过点时,取正值中的最小值,此时;故的取值范围为;故选:C.【点睛】本题考查简单线性规划的非线性目标函数函数问题,解题时作出可行域,利用目标函数的几何意义求解是

10、解题关键对于直线斜率要注意斜率不存在的直线是否存在10C【解析】分析:解决该题的关键是求得等比数列的公比,利用题中所给的条件,建立项之间的关系,从而得到公比所满足的等量关系式,解方程即可得结果.详解:根据题意有,即,因为数列各项都是正数,所以,而,故选C.点睛:该题应用题的条件可以求得等比数列的公比,而待求量就是,代入即可得结果.11B【解析】根据函数单调性逐项判断即可【详解】对A,由正弦函数的单调性知sina与sinb大小不确定,故错误;对B,因为ycx为增函数,且ab,所以cacb,正确对C,因为yxc为增函数,故 ,错误;对D, 因为在为减函数,故 ,错误故选B【点睛】本题考查了不等式的

11、基本性质以及指数函数的单调性,属基础题12D【解析】如图所示建立直角坐标系,设,则,计算得到答案.【详解】如图所示建立直角坐标系,则,设,则.当,即时等号成立.故选:.【点睛】本题考查了向量的计算,建立直角坐标系利用坐标计算是解题的关键.二、填空题:本题共4小题,每小题5分,共20分。13【解析】求导后代入可构造方程求得,即为所求斜率.【详解】,解得:,即在处的切线斜率为.故答案为:.【点睛】本题考查切线斜率的求解问题,考查导数的几何意义,属于基础题.14【解析】对函数求导,通过赋值,求得,再对函数单调性进行分析,求得极大值.【详解】,故解得, ,令,解得函数在单调递增,在单调递减,故的极大值

12、为故答案为:.【点睛】本题考查函数极值的求解,难点是要通过赋值,求出未知量.15【解析】由题意可设椭圆方程为:短轴的一个端点与两焦点组成一正三角形,焦点在轴上又,椭圆的方程为,故答案为考点:椭圆的标准方程,解三角形以及解方程组的相关知识16【解析】求出所有可能,找出符合可能的情况,代入概率计算公式【详解】解:甲、乙、丙、丁4名大学生参加两个企业的实习,每个企业两人,共有种,甲乙在同一个公司有两种可能,故概率为,故答案为【点睛】本题考查古典概型及其概率计算公式,属于基础题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1);(2)详见解析.【解析】(1)由短轴长可知,设,由设

13、而不求法作差即可求得,将相应值代入即求得,椭圆方程可求;(2)考虑特殊位置,即直线与轴垂直时候,成立,当直线斜率存在时,设出直线方程,与椭圆联立,结合中点坐标公式,弦长公式,得到与的关系,将表示出来,结合基本不等式求最值,证明最后的结果【详解】解:(1)由已知,得由,两式相减,得根据已知条件有,当时,即椭圆的标准方程为(2)当直线斜率不存在时,不等式成立.当直线斜率存在时,设由得,由化简,得令,则当且仅当时取等号当且仅当时取等号综上,【点睛】本题为直线与椭圆的综合应用,考查了椭圆方程的求法,点差法处理多未知量问题,能够利用一元二次方程的知识转化处理复杂的计算形式,要求学生计算能力过关,为较难题

14、18(1).(2).【解析】试题分析:()通过讨论x的范围,得到关于x的不等式组,解出取并集即可;()求出f(x)的最大值,得到关于a的不等式,解出即可试题解析:(1)不等式等价于或或,解得或,所以不等式的解集是;(2),解得实数的取值范围是点睛:含绝对值不等式的解法有两个基本方法,一是运用零点分区间讨论,二是利用绝对值的几何意义求解法一是运用分类讨论思想,法二是运用数形结合思想,将绝对值不等式与函数以及不等式恒成立交汇、渗透,解题时强化函数、数形结合与转化化归思想方法的灵活应用,这是命题的新动向19 (1)见证明;(2) 【解析】(1) 取的中点,连接,要证平面平面,转证平面,即证, 即可;

15、(2) 以为坐标原点,以为轴正方向,建立如图所示的空间直角坐标系,分别求出平面与平面的法向量,代入公式,即可得到结果.【详解】(1)取的中点,连接,因为均为边长为的等边三角形,所以,且因为,所以,所以,又因为,平面,平面,所以平面.又因为平面,所以平面平面.(2)因为,为等边三角形,所以,又因为,所以,在中,由正弦定理,得:,所以.以为坐标原点,以为轴正方向,建立如图所示的空间直角坐标系,则,设平面的法向量为,则,即,令,则平面的一个法向量为,依题意,平面的一个法向量所以故二面角的余弦值为.【点睛】空间向量解答立体几何问题的一般步骤是:(1)观察图形,建立恰当的空间直角坐标系;(2)写出相应点

16、的坐标,求出相应直线的方向向量;(3)设出相应平面的法向量,利用两直线垂直数量积为零列出方程组求出法向量;(4)将空间位置关系转化为向量关系;(5)根据定理结论求出相应的角和距离.20(1)见解析 (2)的最小值为【解析】(1)由题可得函数的定义域为,当时,令,可得;令,可得,所以函数在上单调递增,在上单调递减; 当时,令,可得;令,可得或,所以函数在,上单调递增,在上单调递减;当时,恒成立,所以函数在上单调递增 综上,当时,函数在上单调递增,在上单调递减;当时,函数在,上单调递增,在上单调递减;当时,函数在上单调递增 (2)方法一:当时,设,则,所以函数在上单调递减,所以,当且仅当时取等号当

17、时,设,则,所以,设,则,所以函数在上单调递减,且,所以存在,使得,所以当时,;当时, 所以函数在上单调递增,在上单调递减,因为,所以,所以,当且仅当时取等号所以当时,函数取得最小值,且,故函数的最小值为 方法二:当时,则,令,则,所以函数在上单调递增, 又,所以存在,使得,所以函数在上单调递减,在上单调递增, 因为,所以当时,恒成立,所以当时,恒成立,所以函数在上单调递减,所以函数的最小值为21(1),;(2) .【解析】(1)先把直线和曲线的参数方程化成普通方程,再化成极坐标方程; (2)联立极坐标方程,根据极径的几何意义可得,再由面积可解得极角,从而可得【详解】(1)直线的参数方程是为参

18、数),消去参数得直角坐标方程为:转换为极坐标方程为:,即曲线的参数方程是(为参数),转换为直角坐标方程为:, 化为一般式得化为极坐标方程为: (2)由于,得,所以,所以,由于,所以,所以【点睛】本题主要考查参数方程与普通方程的互化、直角坐标方程与极坐标方程的互化,熟记公式即可,属于常考题型.22(1)见解析; (2).【解析】(1)对求导,令,求导研究单调性,分析可得存在使得,即,即得证;(2)分,两种情况讨论,当时,转化利用均值不等式即得证;当,有两个不同的零点,分析可得的最小值为,分,讨论即得解.【详解】(1)由题意,令,则,知为的增函数,因为,所以,存在使得,即所以,当时,为减函数,当时,为增函数,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论