2022年安徽省安庆、安高三第六次模拟考试数学试卷含解析_第1页
2022年安徽省安庆、安高三第六次模拟考试数学试卷含解析_第2页
2022年安徽省安庆、安高三第六次模拟考试数学试卷含解析_第3页
2022年安徽省安庆、安高三第六次模拟考试数学试卷含解析_第4页
2022年安徽省安庆、安高三第六次模拟考试数学试卷含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1设,是非零向量.若,则( )ABCD2为了进一步提升驾驶人交通安全文明意识,驾考新规要求驾校学员必须到街道路口执勤站岗,协助交警劝导交通.现有甲、乙等5名驾校学员按要求分配到三个不同

2、的路口站岗,每个路口至少一人,且甲、乙在同一路口的分配方案共有( )A12种B24种C36种D48种3在平面直角坐标系中,将点绕原点逆时针旋转到点,设直线与轴正半轴所成的最小正角为,则等于( )ABCD4函数在区间上的大致图象如图所示,则可能是( )ABCD5已知数列满足,(),则数列的通项公式( )ABCD6某几何体的三视图如图所示,则该几何体的最长棱的长为( )ABCD7将3个黑球3个白球和1个红球排成一排,各小球除了颜色以外其他属性均相同,则相同颜色的小球不相邻的排法共有( )A14种B15种C16种D18种8已知复数,满足,则( )A1BCD59已知的垂心为,且是的中点,则( )A14

3、B12C10D810某几何体的三视图如图所示(单位:),则该几何体的体积(单位:)为( )AB6CD11如图,用一边长为的正方形硬纸,按各边中点垂直折起四个小三角形,做成一个蛋巢,将体积为的鸡蛋(视为球体)放入其中,蛋巢形状保持不变,则鸡蛋中心(球心)与蛋巢底面的距离为( )ABCD12已知命题:“关于的方程有实根”,若为真命题的充分不必要条件为,则实数的取值范围是( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13函数的单调增区间为_.14已知函数,若在定义域内恒有,则实数的取值范围是_15已知,若,则_.16点到直线的距离为_三、解答题:共70分。解答应写出文字说明、证明过程

4、或演算步骤。17(12分)已知函数.(1)讨论的单调性;(2)若,设,证明:,使.18(12分)已知函数(1)当时,试求曲线在点处的切线;(2)试讨论函数的单调区间19(12分)已知点和椭圆.直线与椭圆交于不同的两点,.(1)当时,求的面积;(2)设直线与椭圆的另一个交点为,当为中点时,求的值.20(12分)已知函数.(1)当时,求函数的值域;(2)的角的对边分别为且,求边上的高的最大值.21(12分)在平面直角坐标系xOy中,直线l的参数方程为(t为参数),以坐标原点为极点,x轴正半轴为极轴,建立极坐标系,已知曲线C的极坐标方程为(1)求直线l的普通方程与曲线C的直角坐标方程;(2)设点,直

5、线l与曲线C交于不同的两点A、B,求的值22(10分)已知数列满足:对一切成立.(1)求数列的通项公式;(2)求数列的前项和.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1D【解析】试题分析:由题意得:若,则;若,则由可知,故也成立,故选D.考点:平面向量数量积.【思路点睛】几何图形中向量的数量积问题是近几年高考的又一热点,作为一类既能考查向量的线性运算、坐标运算、数量积及平面几何知识,又能考查学生的数形结合能力及转化与化归能力的问题,实有其合理之处.解决此类问题的常用方法是:利用已知条件,结合平面几何知识及向量数量积的基本概念

6、直接求解(较易);将条件通过向量的线性运算进行转化,再利用求解(较难);建系,借助向量的坐标运算,此法对解含垂直关系的问题往往有很好效果.2C【解析】先将甲、乙两人看作一个整体,当作一个元素,再将这四个元素分成3个部分,每一个部分至少一个,再将这3部分分配到3个不同的路口,根据分步计数原理可得选项.【详解】把甲、乙两名交警看作一个整体,个人变成了4个元素,再把这4个元素分成3部分,每部分至少有1个人,共有种方法,再把这3部分分到3个不同的路口,有种方法,由分步计数原理,共有种方案。故选:C.【点睛】本题主要考查排列与组合,常常运用捆绑法,插空法,先分组后分配等一些基本思想和方法解决问题,属于中

7、档题.3A【解析】设直线直线与轴正半轴所成的最小正角为,由任意角的三角函数的定义可以求得的值,依题有,则,利用诱导公式即可得到答案.【详解】如图,设直线直线与轴正半轴所成的最小正角为因为点在角的终边上,所以依题有,则,所以,故选:A【点睛】本题考查三角函数的定义及诱导公式,属于基础题.4B【解析】根据特殊值及函数的单调性判断即可;【详解】解:当时,无意义,故排除A;又,则,故排除D;对于C,当时,所以不单调,故排除C;故选:B【点睛】本题考查根据函数图象选择函数解析式,这类问题利用特殊值与排除法是最佳选择,属于基础题.5A【解析】利用数列的递推关系式,通过累加法求解即可【详解】数列满足:,可得

8、以上各式相加可得:,故选:【点睛】本题考查数列的递推关系式的应用,数列累加法以及通项公式的求法,考查计算能力6D【解析】先根据三视图还原几何体是一个四棱锥,根据三视图的数据,计算各棱的长度.【详解】根据三视图可知,几何体是一个四棱锥,如图所示:由三视图知: , 所以,所以,所以该几何体的最长棱的长为故选:D【点睛】本题主要考查三视图的应用,还考查了空间想象和运算求解的能力,属于中档题.7D【解析】采取分类计数和分步计数相结合的方法,分两种情况具体讨论,一种是黑白依次相间,一种是开始仅有两个相同颜色的排在一起【详解】首先将黑球和白球排列好,再插入红球.情况1:黑球和白球按照黑白相间排列(“黑白黑

9、白黑白”或“白黑白黑白黑”),此时将红球插入6个球组成的7个空中即可,因此共有27=14种;情况2:黑球或白球中仅有两个相同颜色的排在一起(“黑白白黑白黑”、“黑白黑白白黑”、“白黑黑白黑白”“白黑白黑黑白”),此时红球只能插入两个相同颜色的球之中,共4种.综上所述,共有14+4=18种.故选:D【点睛】本题考查排列组合公式的具体应用,插空法的应用,属于基础题8A【解析】首先根据复数代数形式的除法运算求出,求出的模即可【详解】解:,故选:A【点睛】本题考查了复数求模问题,考查复数的除法运算,属于基础题9A【解析】由垂心的性质,得到,可转化,又即得解.【详解】因为为的垂心,所以,所以,而, 所以

10、,因为是的中点,所以故选:A【点睛】本题考查了利用向量的线性运算和向量的数量积的运算率,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.10D【解析】根据几何体的三视图,该几何体是由正方体去掉三棱锥得到,根据正方体和三棱锥的体积公式可求解.【详解】如图,该几何体为正方体去掉三棱锥,所以该几何体的体积为:,故选:D【点睛】本题主要考查了空间几何体的三视图以及体积的求法,考查了空间想象力,属于中档题.11D【解析】先求出球心到四个支点所在球的小圆的距离,再加上侧面三角形的高,即可求解.【详解】设四个支点所在球的小圆的圆心为,球心为,由题意,球的体积为,即可得球的半径为1,又由边长为的正方

11、形硬纸,可得圆的半径为,利用球的性质可得,又由到底面的距离即为侧面三角形的高,其中高为,所以球心到底面的距离为.故选:D.【点睛】本题主要考查了空间几何体的结构特征,以及球的性质的综合应用,着重考查了数形结合思想,以及推理与计算能力,属于基础题.12B【解析】命题p:,为,又为真命题的充分不必要条件为,故二、填空题:本题共4小题,每小题5分,共20分。13【解析】先求出导数,再在定义域上考虑导数的符号为正时对应的的集合,从而可得函数的单调增区间.【详解】函数的定义域为.,令,则,故函数的单调增区间为:.故答案为:.【点睛】本题考查导数在函数单调性中的应用,注意先考虑函数的定义域,再考虑导数在定

12、义域上的符号,本题属于基础题.14【解析】根据指数函数与对数函数图象可将原题转化为恒成立问题,凑而可知的图象在过原点且与两函数相切的两条切线之间;利用过一点的曲线切线的求法可求得两切线斜率,结合分母不为零的条件可最终确定的取值范围.【详解】由指数函数与对数函数图象可知:,恒成立可转化为恒成立,即恒成立,即是夹在函数与的图象之间,的图象在过原点且与两函数相切的两条切线之间.设过原点且与相切的直线与函数相切于点,则切线斜率,解得:;设过原点且与相切的直线与函数相切于点,则切线斜率,解得:;当时,又,满足题意;综上所述:实数的取值范围为.【点睛】本题考查恒成立问题的求解,重点考查了导数几何意义应用中

13、的过一点的曲线切线的求解方法;关键是能够结合指数函数和对数函数图象将问题转化为切线斜率的求解问题;易错点是忽略分母不为零的限制,忽略对于临界值能否取得的讨论.151【解析】由题意先求得的值,可得,再令,可得结论【详解】已知,令,可得,故答案为:1【点睛】本题主要考查二项式定理的应用,注意根据题意,分析所给代数式的特点,通过给二项式的赋值,求展开式的系数和,可以简便的求出答案,属于基础题162【解析】直接根据点到直线的距离公式即可求出。【详解】依据点到直线的距离公式,点到直线的距离为。【点睛】本题主要考查点到直线的距离公式的应用。三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17

14、(1)见解析;(2)证明见解析.【解析】(1),分,四种情况讨论即可;(2)问题转化为,利用导数找到与即可证明.【详解】(1).当时,恒成立,当时,;当时,所以,在上是减函数,在上是增函数.当时,.当时,;当时,;当时,所以,在上是减函数,在上是增函数,在上是减函数.当时,则在上是减函数.当时,当时,;当时,;当时,所以,在上是减函数,在上是增函数,在上是减函数.(2)由题意,得.由(1)知,当,时,.令,故在上是减函数,有,所以,从而.,则,令,显然在上是增函数,且,所以存在使,且在上是减函数,在上是增函数,所以,所以,命题成立.【点睛】本题考查利用导数研究函数的单调性以及证明不等式的问题,

15、考查学生逻辑推理能力,是一道较难的题.18(1);(2)见解析【解析】(1)对函数进行求导,可以求出曲线在点处的切线,利用直线的斜截式方程可以求出曲线的切线方程;(2)对函数进行求导,对实数进行分类讨论,可以求出函数的单调区间【详解】(1)当时,函数定义域为,,所以切线方程为;(2)当时,函数定义域为,在上单调递增当时,恒成立,函数定义域为,又在单调递增,单调递减,单调递增当时,函数定义域为,在单调递增,单调递减,单调递增当时,设的两个根为且,由韦达定理易知两根均为正根,且,所以函数的定义域为,又对称轴,且,在单调递增,单调递减,单调递增【点睛】本题考查了曲线切线方程的求法,考查了利用函数的导

16、数讨论函数的单调性问题,考查了分类思想.19(1);(2)或【解析】(1)联立直线的方程和椭圆方程,求得交点的横坐标,由此求得三角形的面积.(2)法一:根据的坐标求得的坐标,将的坐标都代入椭圆方程,化简后求得的坐标,进而求得的值.法二:设出直线的方程,联立直线的方程和椭圆的方程,化简后写出根与系数关系,结合求得点的坐标,进而求得的值.【详解】(1)设,若,则直线的方程为,由,得,解得,设直线与轴交于点,则且.(2)法一:设点因为,所以又点,都在椭圆上,所以解得或所以或.法二:设显然直线有斜率,设直线的方程为由,得所以又解得或所以或所以或.【点睛】本小题主要考查直线和椭圆的位置关系,考查椭圆中三

17、角形面积的求法,考查运算求解能力,属于中档题.20(1).(2)【解析】(1)由题意利用三角恒等变换化简函数的解析式,再利用正弦函数的定义域和值域,得出结论.(2)由题意利用余弦定理三角形的面积公式基本不等式求得的最大值,可得边上的高的最大值.【详解】解:(1)函数,当时,.(2)中,.由余弦定理可得,当且仅当时,取等号,即的最大值为3.再根据,故当取得最大值3时,取得最大值为.【点睛】本题考查降幂公式、两角和的正弦公式,考查正弦函数的性质,余弦定理,三角形面积公式,所用公式较多,选用恰当的公式是解题关键,本题属于中档题21(1),(2)【解析】(1)利用极坐标与直角坐标的互化公式即可把曲线的极坐标方程化为直角坐标方程,利用消去参数即可得到直线的直角坐标方程;(2) 由于在直线上,写出直线的标准参数方程参数方程,代入曲线的方程利用参数的几何意义即可得出求解即可.【详解】(1)直线的普通方程为,即,根

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论